Meškinis Šarūnas, Lazauskas Algirdas, Jankauskas Šarūnas, Guobienė Asta, Gudaitis Rimantas
Institute of Materials Science, Kaunas University of Technology, K. Baršausko 59, LT-51423 Kaunas, Lithuania.
Molecules. 2024 Dec 25;30(1):33. doi: 10.3390/molecules30010033.
This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 °C to as low as 400 °C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 °C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 °C showed increased defect density with an I(D)/I(G) ratio of 1.5 and reduced I(2D)/I(G) (0.8). At 400 °C, the material transitioned to a highly hydrogenated amorphous carbon film, confirmed by photoluminescence (PL) in the Raman spectra. Atomic force microscopy (AFM) showed pristine graphene with a root mean square roughness () of 0.37 nm. By carefully adjusting PECVD synthesis parameters, it was possible to tune the surface roughness of hydrogenated graphene to levels close to that of pristine graphene or to achieve even smoother surfaces. Conductive AFM measurements revealed that hydrogenation could enhance graphene's contact current under specific conditions. The findings highlight the role of PECVD parameters in tailoring graphene's structural, morphological, and electronic properties for diverse applications. This work demonstrates a scalable, low-temperature approach to graphene synthesis, offering the potential for energy storage, sensing, and electronic devices requiring customized material properties.
本研究探索了使用等离子体增强化学气相沉积(PECVD)进行石墨烯的低温合成,重点是优化工艺参数以实现原始石墨烯和氢化石墨烯的可控生长。通过在10 - 20毫巴压力下改变甲烷(25 - 100 sccm)和氢气(25 - 100 sccm)的气体流速,在700℃至低至400℃的温度范围内合成了石墨烯薄膜。拉曼光谱揭示了结构转变:在700℃生长的原始石墨烯表现出强烈的2D峰,I(2D)/I(G)比值>2,而在500℃合成的氢化石墨烯显示出缺陷密度增加,I(D)/I(G)比值约为1.5,I(2D)/I(G)降低(约0.8)。在400℃时,材料转变为高度氢化的非晶碳膜,这在拉曼光谱中的光致发光(PL)中得到证实。原子力显微镜(AFM)显示原始石墨烯的均方根粗糙度()为0.37纳米。通过仔细调整PECVD合成参数,可以将氢化石墨烯的表面粗糙度调整到接近原始石墨烯的水平,甚至实现更光滑的表面。导电AFM测量表明,在特定条件下氢化可以增强石墨烯的接触电流。这些发现突出了PECVD参数在为各种应用定制石墨烯的结构、形态和电子特性方面的作用。这项工作展示了一种可扩展的低温石墨烯合成方法,为需要定制材料特性的能量存储、传感和电子设备提供了潜力。