Sun Ying-Sui, Huang Her-Hsiung, Tsai Yi-Hsuan, Kuo Yu-Lin, Lee Jyh-Wei, Lee Yun-Jung, Linn Thu Ya, Chen Peng
School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
J Dent Sci. 2024 Dec;19(Suppl 1):S70-S80. doi: 10.1016/j.jds.2024.09.007. Epub 2024 Sep 24.
BACKGROUND/PURPOSE: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
This study investigated the use of sandblasting, acid etching, and NaOH leaching to produce porous Ti implants with enhanced biological activity and corrosion resistance.
These surface modifications generated a mixed oxide layer resembling the extracellular matrix (ECM), consisting of a dense amorphous TiO2 inner layer (50-100 nm thick) and a TiO2 outer layer with interconnected pores (pore size 50-500 nm; 150-200 nm thick). The inner layer significantly improved corrosion resistance, while the hydrophilic outer layer, with its porous structure, facilitated protein albumin adsorption and promoted the attachment, proliferation, and mineralization of human bone marrow mesenchymal stem cells.
The combined surface treatment approach of sandblasting, acid etching, and NaOH leaching offers a comprehensive solution to the challenges associated with titanium implants' biological inertness and corrosion susceptibility. By enhancing both the biological activity and corrosion resistance of Ti surfaces, this protocol holds significant promise for improving dental and orthopedic implants' success rates and longevity. Future studies should focus on in vivo assessments and long-term clinical trials to further validate these findings and explore the potential for widespread clinical adoption.
背景/目的:钛(Ti)因其优异的机械性能而广泛应用于牙科和骨科植入物。然而,其光滑且生物惰性的表面不支持新骨向内生长,并且钛离子可能具有不良生物学效应。目的是通过一种非常简单快速的表面处理来提高钛的耐腐蚀性,并创建三维结构化涂层以增强骨整合。
本研究调查了使用喷砂、酸蚀和氢氧化钠浸出法来制备具有增强生物活性和耐腐蚀性的多孔钛植入物。
这些表面改性产生了一层类似细胞外基质(ECM)的混合氧化层,由致密的非晶态TiO₂内层(厚度50 - 100纳米)和具有相互连通孔隙的TiO₂外层(孔径50 - 500纳米;厚度150 - 200纳米)组成。内层显著提高了耐腐蚀性,而具有多孔结构的亲水性外层促进了蛋白质白蛋白的吸附,并促进了人骨髓间充质干细胞的附着、增殖和矿化。
喷砂、酸蚀和氢氧化钠浸出相结合的表面处理方法为解决与钛植入物的生物惰性和腐蚀敏感性相关的挑战提供了一个全面的解决方案。通过增强钛表面的生物活性和耐腐蚀性,该方案对于提高牙科和骨科植入物的成功率和使用寿命具有重大前景。未来的研究应集中在体内评估和长期临床试验上,以进一步验证这些发现并探索其广泛临床应用的潜力。