Suppr超能文献

具有原子精度的过渡金属二硫属化物超材料。

Transition metal dichalcogenide metamaterials with atomic precision.

作者信息

Munkhbat Battulga, Yankovich Andrew B, Baranov Denis G, Verre Ruggero, Olsson Eva, Shegai Timur O

机构信息

Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.

Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.

出版信息

Nat Commun. 2020 Sep 14;11(1):4604. doi: 10.1038/s41467-020-18428-2.

Abstract

The ability to extract materials just a few atoms thick has led to the discoveries of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional materials. The next step in promoting the understanding and utility of flatland physics is to study the one-dimensional edges of these two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling the edges would allow the design of materials with combined edge-plane-bulk characteristics and tailored properties, that is, TMD metamaterials. However, the enabling technology to explore such metamaterials with high precision has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are nearly atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few-nanometer-thin nanoribbons and nanojunctions. Thus, this method enables future studies of a broad range of TMD metamaterials through atomically precise control of the structure.

摘要

能够提取仅几个原子厚的材料已促成了石墨烯、单层过渡金属二硫属化物(TMD)及其他重要二维材料的发现。推动对平面物理的理解和应用的下一步是研究这些二维材料的一维边缘以及控制边缘与平面的比例。边缘通常表现出与平面和体相独特且明显不同的性质。因此,控制边缘将允许设计具有边缘 - 平面 - 体相组合特性和定制性质的材料,即TMD超材料。然而,尚未开发出用于高精度探索此类超材料的使能技术。在此,我们报告了一种简便且可控的各向异性湿法蚀刻方法,该方法能够以原子精度可扩展地制造TMD超材料。我们表明,TMD可以沿着某些晶轴进行蚀刻,使得所获得的边缘几乎在原子尺度上尖锐且完全为锯齿形终止。这产生了具有预定义顺序和复杂性的六边形纳米结构,包括几纳米厚的纳米带和纳米结。因此,该方法通过对结构的原子精度控制,使未来能够对广泛的TMD超材料进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5bf/7490684/ed03282c0365/41467_2020_18428_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验