Suppr超能文献

利用3D打印电润湿装置对液态金属进行连续驱动。

The continuous actuation of liquid metal with a 3D-printed electrowetting device.

作者信息

Ghosh Samannoy, Neupane Rajan, Sahu Dwipak Prasad, Teng Jian, Kong Yong Lin

机构信息

Department of Mechanical Engineering, Rice University, Houston, TX 77005 USA.

出版信息

Med X. 2025;3(1):9. doi: 10.1007/s44258-025-00052-8. Epub 2025 Apr 1.

Abstract

UNLABELLED

The ability of liquid metals (LMs) to recover from repeated stretching and deformation is a particularly attractive attribute for soft bioelectronics. In addition to their high electrical and thermal conductivity, LMs can be actuated, potentially enabling highly durable electro-mechanical and microfluidics systems for applications such as cooling, drug delivery, or reconfigurable electronics. In particular, continuous electrowetting (CEW) phenomena can actuate liquid metal at relatively low voltage and affordable power requirements for wearable systems (~ < 10 V, ~ 10 - 100 µW) by inducing a surface tension gradient across the LM. However, sustaining LM actuation remains challenging due to factors such as electrolyte depletion, polarity changes in multi-electrode systems, and limitations related to LM composition. Here, we demonstrate LM actuation in a circular conduit for prolonged durations of at least nine hours. We enabled sustained actuation by sequentially applying short, direct current (DC) pulses through a multi-electrode system based on the dynamics of LM actuation. As a proof of concept, we also demonstrated the ability of LM to transport electrically conducting, non-conducting, and magnetic materials within a microchannel and show the liquid metal actuation system can be potentially miniaturized to the size of a wearable device. We envision that with further miniaturization of the device architectures, our CEW platform can enable future integration of low-voltage electro-mechanical systems into a broad range of wearable form factors.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s44258-025-00052-8.

摘要

未标注

液态金属(LMs)从反复拉伸和变形中恢复的能力对于软生物电子学来说是一个特别有吸引力的特性。除了具有高导电性和导热性外,液态金属还可以被驱动,这有可能实现高度耐用的机电和微流体系统,用于冷却、药物输送或可重构电子等应用。特别是,连续电润湿(CEW)现象可以通过在液态金属上诱导表面张力梯度,在相对较低的电压和可承受的功率要求下(<10 V,10 - 100 μW)驱动液态金属,适用于可穿戴系统。然而,由于电解质耗尽、多电极系统中的极性变化以及与液态金属成分相关的限制等因素,维持液态金属的驱动仍然具有挑战性。在这里,我们展示了在圆形管道中液态金属至少持续九小时的驱动。我们通过基于液态金属驱动动力学的多电极系统顺序施加短直流(DC)脉冲,实现了持续驱动。作为概念验证,我们还展示了液态金属在微通道内运输导电、非导电和磁性材料的能力,并表明液态金属驱动系统有可能小型化到可穿戴设备的尺寸。我们设想,随着设备架构的进一步小型化,我们的CEW平台能够使未来将低电压机电系统集成到广泛的可穿戴外形中。

补充信息

在线版本包含可在10.1007/s44258-025-00052-8获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07d4/11958460/bdf1f7d6a3b7/44258_2025_52_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验