Saukkoriipi Mikko, Sahlsten Jaakko, Jaskari Joel, Al-Tahmeesschi Ahmed, Ruotsalainen Laura, Kaski Kimmo
Department of Computer Science, Aalto University, Espoo, Finland.
Department of Electronic Engineering, University of York, York, UK.
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:191-203. doi: 10.1007/978-3-031-83274-1_14. Epub 2025 Mar 3.
Accurate segmentation of the primary gross tumor volumes and metastatic lymph nodes in head and neck cancer is crucial for radiotherapy but remains challenging due to high interobserver variability, highlighting a need for an effective auto-segmentation tool. Tumor delineation is used throughout radiotherapy for treatment planning, initially for pre-radiotherapy (pre-RT) MRI scans followed-up by mid-radiotherapy (mid-RT) during the treatment. For the pre-RT task, we propose a dual-stage 3D UNet approach using cascaded neural networks for progressive accuracy refinement. The first-stage models produce an initial binary segmentation, which is then refined with an ensemble of second-stage models for a multiclass segmentation. In Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Task 1, we utilize a dataset consisting of pre-RT and mid-RT T2-weighted MRI scans. The method is trained using 5-fold cross-validation and evaluated as an ensemble of five coarse models and ten refinement models. Our approach (team FinoxyAI) achieves a mean aggregated Dice similarity coefficient of 0.737 on the test set. Moreover, with this metric, our dual-stage approach highlights consistent improvement in segmentation performance across all folds compared to a single-stage segmentation method.
对头颈部癌的原发性大体肿瘤体积和转移性淋巴结进行准确分割对于放射治疗至关重要,但由于观察者间的高度变异性,这一过程仍然具有挑战性,这凸显了对有效自动分割工具的需求。在整个放射治疗过程中,肿瘤轮廓勾画用于治疗计划,最初用于放疗前(pre-RT)的MRI扫描,然后在治疗期间进行放疗中期(mid-RT)的扫描。对于放疗前任务,我们提出了一种双阶段3D UNet方法,使用级联神经网络进行渐进式精度优化。第一阶段模型生成初始的二进制分割,然后用第二阶段模型的集成对其进行细化,以进行多类分割。在2024年头颈部肿瘤磁共振引导应用分割(HNTS-MRG)任务1中,我们使用了一个由放疗前和放疗中期T2加权MRI扫描组成的数据集。该方法使用5折交叉验证进行训练,并作为五个粗模型和十个细化模型的集成进行评估。我们的方法(FinoxyAI团队)在测试集上实现了平均聚合骰子相似系数为0.737。此外,以此指标衡量,与单阶段分割方法相比,我们的双阶段方法在所有折中均显示出分割性能的持续提升。