Suppr超能文献

具有低对称性的多晶半导体中异常可塑性的结构起源。

The structural origin of extraordinary plasticity in polycrystalline semiconductors with low symmetry.

作者信息

Ren Shenghong, Chen Heyang, Fu Huangliu, Huang Haoran, Wei Tian-Ran, Shi Xun, Li Xiuyan

机构信息

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.

出版信息

Sci Adv. 2025 Jul 4;11(27):eadu9205. doi: 10.1126/sciadv.adu9205. Epub 2025 Jul 2.

Abstract

Ductile polycrystals are usually metals with high-symmetry structures that provide multiple slip systems to coordinate the synergetic deformation of adjacent grains. However, while exceptional plasticity was recently discovered in a series of low-symmetry semiconductors, their deformation mechanism remains mysterious. Here, taking monoclinic AgSSe as a case study, we show that the inherent high-symmetry anion sublattice with a quasi-body-centered cubic (bcc) structure is embedded in the monoclinic matrix. This, coupled with the highly diffuse cations, results in multiple slip systems and is responsible for the superior plasticity as normally unexpected in low-symmetry structures. We observe typical slip systems conforming with those of the bcc structure by experiment. This finding clarifies the deformation mechanism of AgS-based low-symmetry semiconductors and sheds light on future exploration of ductile inorganic semiconductors.

摘要

韧性多晶体通常是具有高对称结构的金属,这种结构提供了多个滑移系,以协调相邻晶粒的协同变形。然而,尽管最近在一系列低对称半导体中发现了异常的可塑性,但其变形机制仍然神秘。在这里,以单斜晶系的AgSSe为例,我们表明具有准体心立方(bcc)结构的固有高对称阴离子亚晶格嵌入在单斜晶系基体中。这与高度弥散的阳离子相结合,导致了多个滑移系,并产生了低对称结构中通常意想不到的优异可塑性。我们通过实验观察到了与bcc结构相符的典型滑移系。这一发现阐明了基于AgS的低对称半导体的变形机制,并为未来韧性无机半导体的探索提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f25/12219467/14e306ba774d/sciadv.adu9205-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验