Gedik Betul, Kasapoglu Metin Berk, Dogancali Gulce Ecem, Uckun Gozde Gokce, Cankaya Abdulkadir Burak, Erdem Mehmet Ali
Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Istanbul University, Prof. Dr. Cavit Orhan Tutengil Street No:4 Vezneciler Fatih , Istanbul, Turkey.
Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Sakarya University, Mithatpasa Adnan Menderes No:122/B, Adapazari Sakarya, 54100, Turkey.
BMC Oral Health. 2025 Aug 20;25(1):1341. doi: 10.1186/s12903-025-06704-w.
This study aimed to investigate the influence of different titanium mesh thicknesses (0.1 mm, 0.2 mm, and 0.3 mm) on mechanical durability and stress distribution in guided bone regeneration using finite element analysis (FEA).
Three-dimensional mandibular bone models were reconstructed from cone-beam computed tomography (CBCT) data of a patient with a posterior alveolar defect. Custom titanium meshes with varying thicknesses were designed and virtually applied to the defect area. All models were subjected to a vertical force of 30 N to simulate masticatory loading. FEA simulations were performed using ALTAIR Hypermesh and OptiStruct software to evaluate von Mises stress distribution across the mesh, graft, and bone.
The 0.1 mm mesh exhibited the highest stress concentrations (981.569 MPa), indicating a high risk of plastic deformation and potential graft damage (35.287 MPa). The 0.2 mm mesh provided moderate protection with improved stress distribution (mesh: 452.218 MPa, graft: 11.589 MPa). The 0.3 mm mesh showed the best mechanical performance, with the lowest stress values on both the mesh (226.205 MPa) and the graft (7.785 MPa). Bone stress remained below critical thresholds in all models.
Mesh thickness significantly affects the mechanical behavior and stress shielding capacity of titanium meshes in GBR applications. A thickness of 0.3 mm offers the most reliable mechanical performance. However, 0.2 mm meshes may serve as a viable alternative in cases requiring greater flexibility or lower cost, with caution toward borderline graft stress.
本研究旨在通过有限元分析(FEA)研究不同钛网厚度(0.1毫米、0.2毫米和0.3毫米)对引导骨再生中机械耐久性和应力分布的影响。
从一名患有后牙牙槽骨缺损患者的锥形束计算机断层扫描(CBCT)数据重建三维下颌骨模型。设计了不同厚度的定制钛网,并虚拟应用于缺损区域。所有模型均承受30 N的垂直力以模拟咀嚼负荷。使用ALTAIR Hypermesh和OptiStruct软件进行FEA模拟,以评估整个钛网、移植物和骨上的冯·米塞斯应力分布。
0.1毫米厚的钛网显示出最高的应力集中(981.569兆帕),表明塑性变形风险高且可能对移植物造成损伤(35.287兆帕)。0.2毫米厚的钛网提供了适度的保护,应力分布有所改善(钛网:452.218兆帕,移植物:11.589兆帕)。0.3毫米厚的钛网显示出最佳的机械性能,钛网(226.205兆帕)和移植物(7.785兆帕)上的应力值最低。所有模型中的骨应力均保持在临界阈值以下。
钛网厚度显著影响引导骨再生应用中钛网的力学行为和应力屏蔽能力。0.3毫米的厚度提供了最可靠的机械性能。然而,在需要更大灵活性或更低成本的情况下,0.2毫米厚的钛网可能是一种可行的选择,但要注意移植物应力接近临界值的情况。