Chacón-Calderón Andrea, Zuñiga-Umaña Juan Miguel, Villarreal Claudia, Vega-Baudrit José Roberto, Pereira-Reyes Reinaldo, Corrales-Ureña Yendry Regina
National Laboratory of Nanotechnology LANOTEC - National Center of High Technology CeNAT-CONARE, San José, Costa Rica.
Academic Master's in Bioinformatics and Systems Biology, Graduate Program in Biomedical Sciences, School of Medicine, University of Costa Rica, San José, Costa Rica.
Front Chem. 2025 Sep 5;13:1589836. doi: 10.3389/fchem.2025.1589836. eCollection 2025.
Mangrove ecosystems host diverse biogeochemical pathways that enhance their resilience against a wide range of pollutants, from heavy metals to hormones. The unique combination of extreme physicochemical soil conditions and the anaerobic metabolism of mangrove microbiota creates favorable conditions for nanoscale processes.
The presence of naturally occurring nanoparticles in soil extracts from Costa Rican mangroves at Punta Morales and Cahuita was characterized. Furthermore, we evaluated the ability of these soil extracts to catalyze the formation of silver nanoparticles (AgNPs) under sunlight in saline environments (28°C-31°C within 15 min). Characterization techniques such as transmission electron microscopy (TEM) with selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-Vis spectrophotomery (UV-vis) were used. To investigate the reaction mechanism, we quantified reactive oxygen species (ROS) generated under sunlight and UV light, monitored changes in the absorption bands of the extracts, conducted nanoparticle synthesis in the dark, and measured the reduction potential of the extracts. Ag NPs-extract interactions were evaluated using isothermal titration calorimetry (ITC), and antimicrobial activity was assessed via minimum inhibitory concentration (MIC) assays against (), (), and (). Bacterial growth was analyzed using generalized additive models (GAM) and non-parametric tests at specific time points.
Mangrove sediments contained nanoparticles, primarily silicates and carbon-based organic fibers. Soil extracts catalyzed nanoparticle formation, producing mainly Ag NPs and AgCl particles. Pacific extracts showed a higher affinity for the Ag NPs, while Caribbean extracts enabled faster AgNP synthesis due to a higher density of organic binding sites. The proposed mechanism involves organic matter reduction of silver, photolysis, and catalytic ion effects (e.g., iron). Antimicrobial tests revealed species-specific and concentration-dependent responses, with MIC values between 2.5 and 20 μg/mL, depending on bacterial strain and nanoparticle origin. AgNPs synthesized with Caribbean extracts exhibited stronger antimicrobial activity compared to those synthesized with citric acid, highlighting the potential role of humic and fulvic acid coatings.
Our findings suggest that mangrove soils naturally harbor nanoscale materials and act as efficient biogenic catalysts for metallic nanoparticle synthesis. The distinct properties of extracts from different mangrove regions influence both the synthesis kinetics and the biological activity of the nanoparticles. This underscores the ecological and biotechnological relevance of mangrove-derived materials.
红树林生态系统拥有多样的生物地球化学途径,这增强了它们对从重金属到激素等多种污染物的抵御能力。极端的物理化学土壤条件与红树林微生物群的厌氧代谢的独特结合,为纳米级过程创造了有利条件。
对来自哥斯达黎加蓬塔莫拉莱斯和卡维塔的红树林土壤提取物中天然存在的纳米颗粒进行了表征。此外,我们评估了这些土壤提取物在盐水环境(28°C - 31°C,15分钟内)的阳光下催化银纳米颗粒(AgNPs)形成的能力。使用了诸如配备选区电子衍射(SAED)的透射电子显微镜(TEM)、能量色散X射线光谱(EDS)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和紫外可见分光光度法(UV-vis)等表征技术。为了研究反应机制,我们对阳光下和紫外光下产生的活性氧(ROS)进行了定量,监测了提取物吸收带的变化,在黑暗中进行了纳米颗粒合成,并测量了提取物的还原电位。使用等温滴定量热法(ITC)评估了Ag NPs与提取物的相互作用,并通过针对()、()和()的最低抑菌浓度(MIC)测定评估了抗菌活性。在特定时间点使用广义相加模型(GAM)和非参数检验分析细菌生长情况。
红树林沉积物含有纳米颗粒,主要是硅酸盐和碳基有机纤维。土壤提取物催化纳米颗粒形成,主要产生Ag NPs和AgCl颗粒。太平洋地区的提取物对Ag NPs具有更高的亲和力,而加勒比地区的提取物由于有机结合位点密度较高,能够更快地合成AgNP。提出的机制涉及银的有机物还原、光解和催化离子效应(如铁)。抗菌测试揭示了物种特异性和浓度依赖性反应,MIC值在2.5至20μg/mL之间,具体取决于细菌菌株和纳米颗粒来源。与用柠檬酸合成的AgNPs相比,用加勒比地区提取物合成的AgNPs表现出更强的抗菌活性,突出了腐殖酸和富里酸涂层的潜在作用。
我们的研究结果表明,红树林土壤天然含有纳米级材料,并作为金属纳米颗粒合成的高效生物催化剂。来自不同红树林区域的提取物的独特性质影响了纳米颗粒的合成动力学和生物活性。这突出了红树林衍生材料的生态和生物技术相关性。