Xie Linyan, Yang Kai, Wang Mengfei, Hou Wenli, Ren Qiongqiong
School of Mathematical Medicine and School of Medical Engineering, Henan Medical University, Xinxiang 453003, China.
Xinxiang Key Laboratory of Neurobiosensor, Xinxiang 453003, China.
Biosensors (Basel). 2025 Sep 16;15(9):611. doi: 10.3390/bios15090611.
The integration of flexible materials with optical sensing technologies has advanced wearable optical biosensors, offering significant potential in personalized medicine, health monitoring, and disease prevention. This review summarizes the recent advancements in flexible materials for wearable optical biosensors, with a focus on materials such as polymer substrates, nanostructured materials, MXenes, hydrogels, and textile-based integrated platforms. These materials enhance the functionality, sensitivity, and adaptability of sensors, particularly in wearable applications. The review also explores various optical sensing mechanisms, including surface plasmon resonance (SPR), optical fiber sensing, fluorescence sensing, chemiluminescence, and surface-enhanced Raman spectroscopy (SERS), emphasizing their role in improving the detection capabilities for biomarkers, physiological parameters, and environmental pollutants. Despite significant advancements, critical challenges remain in the fabrication and practical deployment of flexible optical biosensors, particularly regarding the long-term stability of materials under dynamic environments, maintaining reliable biocompatibility during prolonged skin contact, and minimizing signal interference caused by motion artifacts and environmental fluctuations. Addressing these issues is vital to ensure robustness and accuracy in real-world applications. Looking forward, future research should emphasize the development of multifunctional and miniaturized devices, the integration of wireless communication and intelligent data analytics, and the improvement of environmental resilience. Such innovations are expected to accelerate the transition of flexible optical biosensors from laboratory research to practical clinical and consumer healthcare applications, paving the way for intelligent health management and early disease diagnostics. Overall, flexible optical biosensors hold great promise in personalized health management, early disease diagnosis, and continuous physiological monitoring, with the potential to revolutionize the healthcare sector.
柔性材料与光学传感技术的结合推动了可穿戴光学生物传感器的发展,在个性化医疗、健康监测和疾病预防方面具有巨大潜力。本综述总结了用于可穿戴光学生物传感器的柔性材料的最新进展,重点关注聚合物基底、纳米结构材料、MXenes、水凝胶和基于纺织品的集成平台等材料。这些材料增强了传感器的功能、灵敏度和适应性,特别是在可穿戴应用中。该综述还探讨了各种光学传感机制,包括表面等离子体共振(SPR)、光纤传感、荧光传感、化学发光和表面增强拉曼光谱(SERS),强调了它们在提高生物标志物、生理参数和环境污染物检测能力方面的作用。尽管取得了重大进展,但在柔性光学生物传感器的制造和实际应用中仍存在关键挑战,特别是在动态环境下材料的长期稳定性、长时间皮肤接触时保持可靠的生物相容性以及最小化由运动伪影和环境波动引起的信号干扰方面。解决这些问题对于确保实际应用中的稳健性和准确性至关重要。展望未来,未来的研究应强调多功能和小型化设备的开发、无线通信和智能数据分析的集成以及环境适应性的提高。这些创新有望加速柔性光学生物传感器从实验室研究向实际临床和消费者医疗保健应用的转变,为智能健康管理和早期疾病诊断铺平道路。总体而言,柔性光学生物传感器在个性化健康管理、早期疾病诊断和连续生理监测方面具有巨大潜力,有可能彻底改变医疗保健行业。