Tong Xin, Shen Xiao-Ye, Huang Man-Rong, Hou Cheng-Lin
Department of Life Sciences, Natural History Museum of China, Tianqiaonandajie 126, Dongcheng, Beijing 100050, China.
College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China.
Microorganisms. 2025 Aug 27;13(9):1999. doi: 10.3390/microorganisms13091999.
Perylenequinonoid compounds, represented by photosensitive therapeutic agents such as hypocrellins and elsinochromes, demonstrate extensive potential across biomedical, agricultural, and food industrial applications. Nevertheless, their restricted biosynthesis remains a critical bottleneck for commercial exploitation. This study implemented UV mutagenesis to enhance perylenequinone production in fungal strains of , achieving significant yield improvements at the 120 J/m and 150 J/m irradiation intensities. Through systematic optimization of the HPLC analytical platform, we established the precise quantification of five distinct perylenequinonoid derivatives: hypocrellin A, hypocrellin B, shiraiachrome A, elsinochrome A, and elsinochrome B. The mutant strain Z2-1 demonstrated a remarkable biosynthetic capacity with the total perylenequinonoid yields reaching 2101.6 mg/L, representing a 705.70% enhancement over the parental strain zzz816 (260.84 mg/L). Particularly noteworthy was the hyperproduction of hypocrellin A at 1100.7 mg/L, corresponding to a 1208.02% increase from the baseline yield (84.15 mg/L). Furthermore, this work reports the first successful generation of an elsinochrome A-overproducing strain, achieving a 312.68 mg/L output (429.25% increase from 59.08 mg/L). Intriguingly, different mutant strains exhibited distinct production profiles for specific compounds, revealing biosynthetic preference variations among derivatives. These findings emphasize the necessity for comprehensive metabolite profiling during fermentation process optimization to maximize the target compound yields.
以竹红菌素和刺盘孢色素等光敏治疗剂为代表的苝醌类化合物,在生物医学、农业和食品工业应用中展现出广泛的潜力。然而,其有限的生物合成仍然是商业开发的关键瓶颈。本研究采用紫外线诱变来提高真菌菌株中苝醌的产量,在120 J/m和150 J/m的辐照强度下实现了显著的产量提升。通过对高效液相色谱分析平台的系统优化,我们建立了对五种不同苝醌类衍生物的精确定量:竹红菌素A、竹红菌素B、白僵菌素A、刺盘孢色素A和刺盘孢色素B。突变菌株Z2-1表现出显著的生物合成能力,苝醌类化合物的总产量达到2101.6 mg/L,比亲本菌株zzz816(260.84 mg/L)提高了705.70%。特别值得注意的是,竹红菌素A的产量高达1100.7 mg/L,相较于基线产量(84.15 mg/L)增长了1208.02%。此外,本研究首次成功培育出一株高产刺盘孢色素A的菌株,产量达到312.68 mg/L(相较于59.08 mg/L增长了429.25%)。有趣的是,不同的突变菌株对特定化合物表现出不同的生产谱,揭示了衍生物之间生物合成偏好的差异。这些发现强调了在发酵过程优化中进行全面代谢物谱分析以最大化目标化合物产量的必要性。