Suppr超能文献

一些被腺苷甲硫氨酸和腺苷同型半胱氨酸抑制的酿酒酵母突变体。

Some mutants of Saccharomyces cerevisiae inhibited by adenoylmethionine and adenosylhomocysteine.

作者信息

Spence K D, Shapiro S K

出版信息

J Bacteriol. 1967 Oct;94(4):1136-42. doi: 10.1128/jb.94.4.1136-1142.1967.

Abstract

These investigations have established the existence of a novel type of non-nutritional mutant (ai) which is inhibited in the presence of two naturally occurring cellular compounds. The inhibition is complete at an extracellular concentration at least as low as 0.05 mumole/ml of either adenosylhomocysteine or adenosylmethionine. It is suggested that adenosylhomocysteine is the true inhibitor. The ai mutants are phenotypically indistinguishable from the wild type in the absence of inhibitors. The results have shown that, if any direct effect on the methionine biosynthetic pathway exists, it is a secondary rather than the primary effect of the inhibitors. The ai mutation does not involve the loss of the adenosylmethionine (or methylmethionine): homocysteine methyltransferase. In addition, the ai mutants accumulate, maintain, and utilize adenosylmethionine and methionine in a manner similar to the parental strain. No genetic relationship could be detected between the ai-1 mutation and several different markers affecting methionine biosynthesis. The ai-1 mutation was also shown to be genetically recessive. Methionine partially reverses the inhibition caused by adenosylmethionine or adenosylhomocysteine. Neither methylmethionine nor homocysteine reversed the inhibition, which showed that the homocysteine methyltransferase cannot catalyze the synthesis of sufficient methionine under these conditions to simulate the effects of extracellularly supplied methionine. If adenine is present, methionine does not cause reversal of inhibition due to adenosylmethionine or adenosylhomocysteine. From the data presented, it is clear that the ai mutation involves some metabolic control mechanism, though the alteration does not appear to be associated primarily with the biosynthesis of methionine.

摘要

这些研究证实了一种新型非营养突变体(ai)的存在,该突变体在两种天然存在的细胞化合物存在时会受到抑制。在细胞外浓度至少低至0.05微摩尔/毫升的腺苷同型半胱氨酸或腺苷甲硫氨酸时,抑制作用完全。有人认为腺苷同型半胱氨酸是真正的抑制剂。在没有抑制剂的情况下,ai突变体在表型上与野生型无法区分。结果表明,如果对甲硫氨酸生物合成途径存在任何直接影响,那也是抑制剂的次要而非主要作用。ai突变并不涉及腺苷甲硫氨酸(或甲基甲硫氨酸):同型半胱氨酸甲基转移酶的缺失。此外,ai突变体以与亲本菌株相似的方式积累、维持和利用腺苷甲硫氨酸和甲硫氨酸。在ai - 1突变与影响甲硫氨酸生物合成的几个不同标记之间未检测到遗传关系。ai - 1突变也被证明是遗传隐性的。甲硫氨酸部分逆转了由腺苷甲硫氨酸或腺苷同型半胱氨酸引起的抑制作用。甲基甲硫氨酸和同型半胱氨酸都不能逆转这种抑制作用,这表明在这些条件下同型半胱氨酸甲基转移酶无法催化合成足够的甲硫氨酸来模拟细胞外提供的甲硫氨酸的作用。如果存在腺嘌呤,甲硫氨酸不会导致因腺苷甲硫氨酸或腺苷同型半胱氨酸引起的抑制作用的逆转。从所呈现的数据来看,很明显ai突变涉及某种代谢控制机制,尽管这种改变似乎主要与甲硫氨酸的生物合成无关。

相似文献

5
Transport of S-adenosylmethionine in Saccharomyces cerevisiae.酿酒酵母中S-腺苷甲硫氨酸的转运
J Bacteriol. 1972 Feb;109(2):499-504. doi: 10.1128/jb.109.2.499-504.1972.

本文引用的文献

2
Methionine biosynthesis in yeast.酵母中的甲硫氨酸生物合成。
Arch Biochem Biophys. 1962 Jun;97:491-6. doi: 10.1016/0003-9861(62)90112-1.
10
Genetic mapping in Saccharomyces.酿酒酵母中的基因图谱
Genetics. 1966 Jan;53(1):165-73. doi: 10.1093/genetics/53.1.165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验