Suppr超能文献

酿酒酵母中嘧啶二聚体切除的分子机制:体内紫外线照射的脱氧核糖核酸的切割

Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet-irradiated deoxyribonucleic acid in vivo.

作者信息

Reynolds R J, Friedberg E C

出版信息

J Bacteriol. 1981 May;146(2):692-704. doi: 10.1128/jb.146.2.692-704.1981.

Abstract

A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD(+) strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.

摘要

对一组与遗传相关的酿酒酵母紫外线(UV)敏感突变体进行了研究,内容包括它们在暴露于紫外线辐射后的存活率、通过对二聚体特异性酶探针敏感的位点(嘧啶二聚体)的损失来衡量的进行嘧啶二聚体切除修复的能力,以及它们在体内紫外线照射后孵育期间对其脱氧核糖核酸(DNA)进行切口的能力(通过检测核DNA中的单链断裂来衡量)。除了一个单倍体RAD(+)菌株(S288C)外,还研究了代表六个RAD位点(RAD1、RAD2、RAD3、RAD4、RAD14和RAD18)的11种不同突变体。通过对来自藤黄微球菌的对嘧啶二聚体具有特异性的酶制剂敏感的DNA位点的损失来确定切除修复能力的定量分析表明,在所研究的菌株中,除了三个菌株外,该参数存在严重缺陷。rad14-1突变体显示出降低但显著的去除酶敏感位点的残留能力,rad2-4突变体也是如此。后者是所研究的三个不同rad2等位基因中唯一在这方面有渗漏的。携带突变等位基因radA8-1的紫外线敏感菌株表现出正常的酶敏感位点损失,这与其被归为RAD6而非RAD3上位组一致。所有具有RAD1、RAD2、RAD3、RAD4和RAD14位点突变等位基因的菌株在暴露于紫外线辐射后,在核DNA中均未检测到依赖孵育的链断裂。这些实验表明,RAD1、RAD2、RAD3、RAD4(可能还有RAD14)基因在体内嘧啶二聚体切除过程中对紫外线照射的DNA进行切口都是必需的。

相似文献

1
酿酒酵母中嘧啶二聚体切除的分子机制:体内紫外线照射的脱氧核糖核酸的切割
J Bacteriol. 1981 May;146(2):692-704. doi: 10.1128/jb.146.2.692-704.1981.
3
酿酒酵母切除缺陷型突变体中嘧啶二聚体去除的切割及切割后步骤。
J Bacteriol. 1981 Nov;148(2):618-23. doi: 10.1128/jb.148.2.618-623.1981.
4
酿酒酵母rad突变体中6-4光产物和环丁烷嘧啶二聚体的修复
Mutat Res. 1994 Nov;315(3):261-73. doi: 10.1016/0921-8777(94)90037-x.
5
补骨脂素加近紫外光诱导的酿酒酵母链间DNA交联切除的遗传控制
Mol Cell Biol. 1982 Aug;2(8):939-48. doi: 10.1128/mcb.2.8.939-948.1982.
6
酿酒酵母中参与嘧啶二聚体去除的另外三个基因:RAD7、RAD14和MMS19。
Mol Gen Genet. 1979 Nov;176(3):351-9. doi: 10.1007/BF00333097.
7
酿酒酵母辐射敏感突变体rad10和rad16中胸腺嘧啶二聚体切除缺陷。
Mol Gen Genet. 1977 Apr 29;152(3):125-8. doi: 10.1007/BF00268808.
9
酿酒酵母中嘧啶二聚体切除的分子机制:细胞提取物中二聚体的切除
J Bacteriol. 1981 Aug;147(2):705-8. doi: 10.1128/jb.147.2.705-708.1981.
10
酿酒酵母辐射敏感突变体rad3、rad4、rad6和rad9中嘧啶二聚体的修复
Mutat Res. 1977 Oct;45(1):13-20. doi: 10.1016/0027-5107(77)90038-0.

引用本文的文献

1
核苷酸切除修复内切酶XPF在动基体寄生虫布氏锥虫中的作用。
Sci Rep. 2025 Jul 2;15(1):23579. doi: 10.1038/s41598-025-08659-y.
2
复制应激反应通路中的突变与核苷酸切除修复中的S期特异性缺陷相关。
J Biol Chem. 2016 Jan 8;291(2):522-37. doi: 10.1074/jbc.M115.685883. Epub 2015 Nov 17.
3
主导分子,自我修复。
J Biol Chem. 2014 May 16;289(20):13691-700. doi: 10.1074/jbc.X114.572115. Epub 2014 Apr 7.
5
酵母中的转录相关诱变与基因表达水平直接成正比,并受DNA复制方向的影响。
DNA Repair (Amst). 2007 Sep 1;6(9):1285-96. doi: 10.1016/j.dnarep.2007.02.023. Epub 2007 Mar 29.
6
酵母细胞 RAD3 基因的分离与鉴定及其缺失突变体的致死性。
Proc Natl Acad Sci U S A. 1983 Sep;80(18):5680-4. doi: 10.1073/pnas.80.18.5680.
7
多种途径促进酿酒酵母中的短序列重组。
Mol Cell Biol. 2002 Aug;22(15):5347-56. doi: 10.1128/MCB.22.15.5347-5356.2002.
8
9
酿酒酵母中短补丁错配修复的证据。
EMBO J. 2000 Jul 3;19(13):3408-17. doi: 10.1093/emboj/19.13.3408.
10
酿酒酵母中DNA双链断裂的DNA损伤诱导型且不依赖RAD52的修复
Genetics. 2000 Mar;154(3):1085-99. doi: 10.1093/genetics/154.3.1085.

本文引用的文献

1
微生物体照射中的吸收效应。
Science. 1950 Mar 3;111(2879):229. doi: 10.1126/science.111.2879.229-a.
6
对紫外线敏感的酵母突变体。
J Bacteriol. 1967 Sep;94(3):571-5. doi: 10.1128/jb.94.3.571-575.1967.
7
着色性干皮病细胞在修复其DNA紫外线损伤时不执行第一步的证据。
Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035-41. doi: 10.1073/pnas.64.3.1035.
8
从紫外线照射的酵母DNA中切除嘧啶二聚体。
Mol Gen Genet. 1971;113(4):359-62. doi: 10.1007/BF00272336.
9
暗修复合成的饱和:链断裂的积累。
Biophys J. 1969 May;9(5):647-53. doi: 10.1016/S0006-3495(69)86409-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验