Suppr超能文献

喹诺酮类药物的耐药机制。

Mechanisms of resistance to quinolones.

作者信息

Cambau E, Gutmann L

机构信息

Laboratoire de Bacteriologie-Virologie, CHU Pitié-Salpêtrière, Université Paris VI, France.

出版信息

Drugs. 1993;45 Suppl 3:15-23. doi: 10.2165/00003495-199300453-00005.

Abstract

Mechanisms of resistance to the quinolones have been described for several bacterial species, but mainly for Escherichia coli and Staphylococcus aureus. Two principal mechanisms have been described: 1) alteration of the DNA gyrase, which is the target site of the quinolones; and 2) diminished accumulation in the cell as a result of either decreased uptake or increased efflux. Alteration of DNA gyrase is usually the result of a mutation in the gyrA, or more rarely, the gyrB gene. All substitutions in subunit A of the gyrase are located in the 67 to 106 amino-acid domain and are clustered around Ser-83 in E. coli and Ser-84 in S. aureus. A decrease in uptake has been described for Gram-negative bacteria such as Enterobacteriaceae and Pseudomonas aeruginosa. It has almost always been correlated with a modified electrophoretic profile of outer membrane proteins of the quinolone-resistant mutants. In E. coli, a decrease in OmpF seemed to be linked to the activation of the micF operon in most of the mutants described. These mutants were cross-resistant to unrelated antibiotics, such as trimethoprim, chloramphenicol, tetracycline, and some beta-lactams. In all these mutants the normal or enhanced efflux of quinolones increased the level of resistance. Enhanced efflux has been described as the second mechanism of resistance in S. aureus. Acquired resistance to the quinolones was thought, until recently, to result from chromosomal mutation. Plasmid-mediated resistance associated with an enhanced efflux has been described in S. aureus, but this needs to be confirmed. When a high level of resistance is observed, 2 or 3 mechanisms may be involved.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

已经描述了几种细菌对喹诺酮类药物的耐药机制,但主要是针对大肠杆菌和金黄色葡萄球菌。已描述了两种主要机制:1)DNA回旋酶的改变,它是喹诺酮类药物的靶位点;2)由于摄取减少或外排增加导致细胞内药物蓄积减少。DNA回旋酶的改变通常是gyrA基因突变的结果,很少是gyrB基因突变的结果。回旋酶亚基A中的所有替换都位于67至106个氨基酸结构域,并且在大肠杆菌中围绕Ser-83聚集,在金黄色葡萄球菌中围绕Ser-84聚集。已经描述了革兰氏阴性菌如肠杆菌科和铜绿假单胞菌摄取减少的情况。它几乎总是与喹诺酮耐药突变体的外膜蛋白电泳图谱改变相关。在大肠杆菌中,在大多数所描述的突变体中,OmpF减少似乎与micF操纵子的激活有关。这些突变体对不相关的抗生素如甲氧苄啶、氯霉素、四环素和一些β-内酰胺类交叉耐药。在所有这些突变体中,喹诺酮类药物正常或增强的外排增加了耐药水平。增强的外排已被描述为金黄色葡萄球菌耐药的第二种机制。直到最近,人们还认为对喹诺酮类药物的获得性耐药是由染色体突变引起的。在金黄色葡萄球菌中已经描述了与增强的外排相关的质粒介导的耐药性,但这需要得到证实。当观察到高水平耐药时,可能涉及2种或3种机制。(摘要截短于250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验