Suppr超能文献

脑电图信号分析中参数方法的评估

Evaluation of parametric methods in EEG signal analysis.

作者信息

Tseng S Y, Chen R C, Chong F C, Kuo T S

机构信息

Department of Electrical Engineering, National Taiwan University, Taipei, ROC.

出版信息

Med Eng Phys. 1995 Jan;17(1):71-8. doi: 10.1016/1350-4533(95)90380-t.

Abstract

In this paper, a well designed database, considering statistical characteristics and including all types of Electroencephalogram (EEG) is built. 900 EEG segments, each with a short interval (1.024 sec) in this database are clustered into eight classes. Three tests of white noise for evaluating the efficiency of autoregressive (AR) and autoregressive-moving average (ARMA) models are proposed. The Akaike information criterion (AIC) is used for determining orders of AR and ARMA models. The AR model requires a higher model order (8.67 on the average) than the ARMA model (6.17 on the average). However, it is found that about 96% of the 900 segments can be efficiently represented by the AR model, and only about 78% of them can be efficiently represented by ARMA model. We therefore conclude that the AR model is preferred for estimating EEG signals.

摘要

本文构建了一个精心设计的数据库,该数据库考虑了统计特征并包含所有类型的脑电图(EEG)。此数据库中的900个EEG片段,每个片段的时间间隔较短(1.024秒),被聚类为八类。提出了三种用于评估自回归(AR)和自回归移动平均(ARMA)模型效率的白噪声测试。赤池信息准则(AIC)用于确定AR和ARMA模型的阶数。AR模型所需的模型阶数(平均为8.67)高于ARMA模型(平均为6.17)。然而,发现900个片段中约96%可以由AR模型有效表示,而只有约78%可以由ARMA模型有效表示。因此,我们得出结论,在估计EEG信号时,AR模型更受青睐。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验