Ozcan S, Freidel K, Leuker A, Ciriacy M
Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
J Bacteriol. 1993 Sep;175(17):5520-8. doi: 10.1128/jb.175.17.5520-5528.1993.
Growth and carbon metabolism in triosephosphate isomerase (delta tpi1) mutants of Saccharomyces cerevisiae are severely inhibited by glucose. By using this feature, we selected for secondary site revertants on glucose. We defined five complementation groups, some of which have previously been identified as glucose repression mutants. The predominant mutant type, HTR1 (hexose transport regulation), is dominant and causes various glucose-specific metabolic and regulatory defects in TPI1 wild-type cells. HTR1 mutants are deficient in high-affinity glucose uptake and have reduced low-affinity transport. Transcription of various known glucose transporter genes (HXT1, HXT3, and HXT4) was defective in HTR1 mutants, leading us to suggest that HTR mutations affect a negative factor of HXT gene expression. By contrast, transcript levels for SNF3, which encodes a component of high-affinity glucose uptake, were unaffected. We presume that HTR1 mutations affect a negative factor of HXT gene expression. Multicopy expression of HXT genes or parts of their regulatory sequences suppresses the metabolic defects of HTR1 mutants but not their derepressed phenotype at high glucose concentrations. This suggests that the glucose repression defect is not a direct result of the metabolically relevant defect in glucose transport. Alternatively, some unidentified regulatory components of the glucose transport system may be involved in the generation or transmission of signals for glucose repression.
酿酒酵母磷酸丙糖异构酶(δtpi1)突变体的生长和碳代谢受到葡萄糖的严重抑制。利用这一特性,我们在葡萄糖上筛选了二次位点回复突变体。我们定义了五个互补群,其中一些先前已被鉴定为葡萄糖阻遏突变体。主要的突变类型HTR1(己糖转运调节)是显性的,会在TPI1野生型细胞中导致各种葡萄糖特异性的代谢和调节缺陷。HTR1突变体在高亲和力葡萄糖摄取方面存在缺陷,低亲和力转运也有所降低。各种已知的葡萄糖转运蛋白基因(HXT1、HXT3和HXT4)在HTR1突变体中的转录存在缺陷,这使我们认为HTR突变影响了HXT基因表达的一个负调控因子。相比之下,编码高亲和力葡萄糖摄取成分的SNF3的转录水平未受影响。我们推测HTR1突变影响了HXT基因表达的一个负调控因子。HXT基因或其部分调控序列的多拷贝表达可抑制HTR1突变体的代谢缺陷,但不能抑制其在高葡萄糖浓度下的去阻遏表型。这表明葡萄糖阻遏缺陷不是葡萄糖转运中代谢相关缺陷的直接结果。或者,葡萄糖转运系统中一些未确定的调控成分可能参与了葡萄糖阻遏信号的产生或传递。