Suppr超能文献

走向移动:微管马达与染色体分离

Going mobile: microtubule motors and chromosome segregation.

作者信息

Barton N R, Goldstein L S

机构信息

Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla 92093-0683, USA.

出版信息

Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1735-42. doi: 10.1073/pnas.93.5.1735.

Abstract

Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.

摘要

真核生物中染色体的正确分离依赖于有丝分裂和减数分裂纺锤体,它们在细胞分裂时组装,在分裂完成后解体。这些纺锤体大部分由微管组成,微管通过可控的聚合和解聚产生力,或者传导由分子微管马达产生的力。在这篇综述中,我们讨论了从减数分裂和有丝分裂过程中力产生的分析中获得的关于染色体分离机制的最新见解。这些分析表明,驱动蛋白超家族和动力蛋白家族的成员在所有生物体中对于正确的染色体和纺锤体行为都是必不可少的。同样明显的是,微管聚合和解聚产生的力能够在体外产生足以使染色体移动的力;它们在体内是否如此尚不清楚。一个重要的认识是,一些纺锤体活动可以由不止一种马达完成,因此功能冗余很明显。此外,一些减数分裂或有丝分裂运动显然是通过独立的半冗余过程的协同作用发生的。最后,与驱动蛋白相关的蛋白质的分子特征表明,一级序列和与其他蛋白质的关联的变化都可以产生马达复合体,这些复合体可能使用多种机制与微管一起传导力。关于这些活动的调节以及染色体分离中相反和协同事件的协调,仍有许多有待了解的地方;这一系列问题代表了未来研究最重要的前沿领域之一。

相似文献

1
Going mobile: microtubule motors and chromosome segregation.走向移动:微管马达与染色体分离
Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1735-42. doi: 10.1073/pnas.93.5.1735.
9
Microtubule-based motor function in mitosis.有丝分裂中基于微管的运动功能。
Curr Opin Struct Biol. 1999 Apr;9(2):268-74. doi: 10.1016/s0959-440x(99)80037-2.

引用本文的文献

本文引用的文献

4
Kinetochores, microtubules and the metaphase checkpoint.动粒、微管与中期检验点。
Trends Cell Biol. 1995 Apr;5(4):143-8. doi: 10.1016/s0962-8924(00)88968-0.
5
Structural variations among the kinesins.驱动蛋白之间的结构变异。
Trends Cell Biol. 1995 Jul;5(7):259-62. doi: 10.1016/s0962-8924(00)89028-5.
6
Chromosomes take the lead in spindle assembly.染色体在纺锤体组装过程中起主导作用。
Trends Cell Biol. 1995 Aug;5(8):297-301. doi: 10.1016/s0962-8924(00)89045-5.
7
Mitotic spindle pole separation.有丝分裂纺锤体极分离
Trends Cell Biol. 1993 Dec;3(12):432-7. doi: 10.1016/0962-8924(93)90032-v.
9
The kinesin superfamily: tails of functional redundancy.驱动蛋白超家族:功能冗余的尾部
Trends Cell Biol. 1991 Oct;1(4):93-8. doi: 10.1016/0962-8924(91)90036-9.
10
Motor proteins in cell division.细胞分裂中的运动蛋白。
Trends Cell Biol. 1991 Nov;1(5):122-9. doi: 10.1016/0962-8924(91)90117-r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验