Suppr超能文献

溶菌酶:蛋白质晶体学中的一种模型酶。

Lysozyme: a model enzyme in protein crystallography.

作者信息

Strynadka N C, James M N

机构信息

MRC Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Canada.

出版信息

EXS. 1996;75:185-222. doi: 10.1007/978-3-0348-9225-4_11.

Abstract

The review concentrates on the crystal structure results from several protein crystallography laboratories on three different lysozymes, the type-c lysozymes such as hen egg-white lysozyme (HEWL), the type-g lysozyme, such as goose egg-white lysozyme (GEWL), and the lysozyme from T4 bacteriophage (T4L). The crystallographic studies on HEWL in several different crystal forms have shown that the lysozyme molecule is relatively rigid with the residues of the active site Glu35 and Asp52 adopting almost identical conformations in all structures and species variants. The NMR results also confirm the presence of a similar conformation of HEWL in solution. All three enzymes, HEWL, GEWL and T4L are composed of two domains, one that is predominantly alpha-helical and a smaller domain that is mainly beta-sheet in nature. The general acid/general base residue in each lysozyme (Glu35 in HEWL, Glu73 in GEWL and Glu11 in T4L) is contributed by the larger alpha-helical domain. The beta-sheet domains of HEWL and T4L contribute an aspartate to their respective active sites, which is likely involved in electrostatic stabilization of the oxycarbonium ion intermediate of the site D sugar on the hydrolytic pathway of oligosaccharides. There is no analogous aspartate carboxylate group in GEWL although minor conformational changes could position one or other of Asp86 or Asp97 for such a stabilization role. The binding of substrate analogues, transition state mimics and oligosaccharide products of hydrolysis to HEWL, GEWL and T4L have contributed greatly to our understanding of sugar binding to proteins. The observed subtle conformational differences of the free vs bound forms of these enzymes are best described by a narrowing of the active site clefts in the presence of the inhibitors. Details of the binding interactions of those residues lining the oligosaccharide binding clefts of the three-enzymes HEWL, GEWL and T4L with the sugar residues in sites A, B, C and D are presented and discussed. Oligosaccharides of (GlcNAc)n and alternating MurNAc-GlcNAc-MurNAc have been bound to these three enzymes and the structures determined at high resolution. These binding studies have contributed greatly to our understanding of the catalytic mechanism of the lysozyme glycosidase activity. The currently accepted view of this mechanism is presented and discussed in this review.

摘要

本综述聚焦于来自多个蛋白质晶体学实验室对三种不同溶菌酶的晶体结构研究结果,即c型溶菌酶,如鸡蛋清溶菌酶(HEWL);g型溶菌酶,如鹅蛋清溶菌酶(GEWL);以及T4噬菌体溶菌酶(T4L)。对多种不同晶体形式的HEWL进行的晶体学研究表明,溶菌酶分子相对刚性,活性位点Glu35和Asp52的残基在所有结构和物种变体中都采用几乎相同的构象。核磁共振结果也证实了溶液中HEWL存在类似的构象。HEWL、GEWL和T4L这三种酶均由两个结构域组成,一个主要是α螺旋结构域,另一个较小的结构域主要是β折叠结构。每种溶菌酶中的一般酸/一般碱残基(HEWL中的Glu35、GEWL中的Glu73和T4L中的Glu11)由较大的α螺旋结构域提供。HEWL和T4L的β折叠结构域为各自的活性位点贡献了一个天冬氨酸,这可能参与了寡糖水解途径中位点D糖的氧鎓离子中间体的静电稳定作用。GEWL中没有类似的天冬氨酸羧酸盐基团,尽管微小的构象变化可能使Asp86或Asp97中的一个或另一个发挥这种稳定作用。底物类似物、过渡态模拟物和水解寡糖产物与HEWL、GEWL和T4L的结合,极大地促进了我们对糖与蛋白质结合的理解。这些酶的游离形式与结合形式之间观察到的细微构象差异,最好通过抑制剂存在时活性位点裂隙变窄来描述。本文介绍并讨论了HEWL、GEWL和T4L这三种酶的寡糖结合裂隙内衬残基与位点A、B、C和D中的糖残基的结合相互作用细节。(GlcNAc)n寡糖以及交替的MurNAc - GlcNAc - MurNAc已与这三种酶结合,并以高分辨率确定了结构。这些结合研究极大地促进了我们对溶菌酶糖苷酶活性催化机制的理解。本综述介绍并讨论了目前关于该机制的公认观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验