Suppr超能文献

疫苗接种对麻疹动态传播的空间相关性和持续性的影响。

Impact of vaccination on the spatial correlation and persistence of measles dynamics.

作者信息

Bolker B M, Grenfell B T

机构信息

Department of Zoology, Cambridge University, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12648-53. doi: 10.1073/pnas.93.22.12648.

Abstract

The onset of measles vaccination in England and Wales in 1968 coincided with a marked drop in the temporal correlation of epidemic patterns between major cities. We analyze a variety of hypotheses for the mechanisms driving this change. Straightforward stochastic models suggest that the interaction between a lowered susceptible population (and hence increased demographic noise) and nonlinear dynamics is sufficient to cause the observed drop in correlation. The decorrelation of epidemics could potentially lessen the chance of global extinction and so inhibit attempts at measles eradication.

摘要

1968年在英格兰和威尔士开始接种麻疹疫苗,与此同时,主要城市之间流行模式的时间相关性显著下降。我们分析了导致这种变化的各种机制假说。简单的随机模型表明,易感人群数量减少(从而增加了人口统计学噪声)与非线性动力学之间的相互作用足以导致观察到的相关性下降。疫情的去相关性可能会降低全球灭绝的可能性,从而抑制根除麻疹的努力。

相似文献

1
Impact of vaccination on the spatial correlation and persistence of measles dynamics.
Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12648-53. doi: 10.1073/pnas.93.22.12648.
2
Travelling waves and spatial hierarchies in measles epidemics.
Nature. 2001 Dec 13;414(6865):716-23. doi: 10.1038/414716a.
3
Opposite patterns of synchrony in sympatric disease metapopulations.
Science. 1999 Oct 29;286(5441):968-71. doi: 10.1126/science.286.5441.968.
4
Empirical determinants of measles metapopulation dynamics in England and Wales.
Proc Biol Sci. 1998 Feb 7;265(1392):211-20. doi: 10.1098/rspb.1998.0284.
5
A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination.
Nat Ecol Evol. 2020 Jul;4(7):934-939. doi: 10.1038/s41559-020-1186-6. Epub 2020 Apr 27.
6
Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
Am Nat. 2004 Aug;164(2):267-81. doi: 10.1086/422341. Epub 2004 Jul 8.
7
Stochastic dynamics and a power law for measles variability.
Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):769-76. doi: 10.1098/rstb.1999.0429.
8
Measles outbreaks in a population with declining vaccine uptake.
Science. 2003 Aug 8;301(5634):804. doi: 10.1126/science.1086726.

引用本文的文献

1
Deep neural networks for endemic measles dynamics: Comparative analysis and integration with mechanistic models.
PLoS Comput Biol. 2024 Nov 21;20(11):e1012616. doi: 10.1371/journal.pcbi.1012616. eCollection 2024 Nov.
2
Assessing the spatial scale of synchrony in forest tree population dynamics.
Proc Biol Sci. 2024 Nov;291(2035):20240486. doi: 10.1098/rspb.2024.0486. Epub 2024 Nov 20.
3
A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world.
Math Models Methods Appl Sci. 2020 Jul;30(8):1591-1651. doi: 10.1142/s0218202520500323. Epub 2020 Aug 19.
4
Periodic synchronisation of dengue epidemics in Thailand over the last 5 decades driven by temperature and immunity.
PLoS Biol. 2022 Mar 18;20(3):e3001160. doi: 10.1371/journal.pbio.3001160. eCollection 2022 Mar.
5
The role of social structure and dynamics in the maintenance of endemic disease.
Behav Ecol Sociobiol. 2021;75(8):122. doi: 10.1007/s00265-021-03055-8. Epub 2021 Aug 18.
6
COVID-19 mortality analysis from soft-data multivariate curve regression and machine learning.
Stoch Environ Res Risk Assess. 2021;35(12):2659-2678. doi: 10.1007/s00477-021-02021-0. Epub 2021 Apr 19.
7
The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30547-30553. doi: 10.1073/pnas.2013182117. Epub 2020 Nov 9.
8
Coexisting attractors in the context of cross-scale population dynamics: measles in London as a case study.
Proc Biol Sci. 2020 Apr 29;287(1925):20191510. doi: 10.1098/rspb.2019.1510. Epub 2020 Apr 22.
9
Optimizing spatial and seasonal deployment of vaccination campaigns to eliminate wildlife rabies.
Philos Trans R Soc Lond B Biol Sci. 2019 Jul 8;374(1776):20180280. doi: 10.1098/rstb.2018.0280.

本文引用的文献

1
Spatial heterogeneity in epidemic models.
J Theor Biol. 1996 Mar 7;179(1):1-11. doi: 10.1006/jtbi.1996.0042.
2
Space, persistence and dynamics of measles epidemics.
Philos Trans R Soc Lond B Biol Sci. 1995 May 30;348(1325):309-20. doi: 10.1098/rstb.1995.0070.
3
Chaos and complexity in measles models: a comparative numerical study.
IMA J Math Appl Med Biol. 1993;10(2):83-95. doi: 10.1093/imammb/10.2.83.
4
Chaos reduces species extinction by amplifying local population noise.
Nature. 1993 Jul 15;364(6434):229-32. doi: 10.1038/364229a0.
5
Transient periodicity and episodic predictability in biological dynamics.
IMA J Math Appl Med Biol. 1993;10(4):227-47. doi: 10.1093/imammb/10.4.227.
6
Chaos and biological complexity in measles dynamics.
Proc Biol Sci. 1993 Jan 22;251(1330):75-81. doi: 10.1098/rspb.1993.0011.
7
A structured epidemic model incorporating geographic mobility among regions.
Math Biosci. 1995 Jul-Aug;128(1-2):71-91. doi: 10.1016/0025-5564(94)00068-b.
8
Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
Stat Methods Med Res. 1995 Jun;4(2):160-83. doi: 10.1177/096228029500400205.
9
Changes in the seasonal incidence of measles in Iceland, 1896--1974.
J Hyg (Lond). 1980 Dec;85(3):451-7. doi: 10.1017/s002217240006352x.
10
Measles in England and Wales--I: An analysis of factors underlying seasonal patterns.
Int J Epidemiol. 1982 Mar;11(1):5-14. doi: 10.1093/ije/11.1.5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验