Morcuende Sara, Delgado-Garcia José-Maria, Ugolini Gabriella
Laboratorio Andaluz de Biologia, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
J Neurosci. 2002 Oct 15;22(20):8808-18. doi: 10.1523/JNEUROSCI.22-20-08808.2002.
Retrograde transneuronal tracing with rabies virus from the right orbicularis oculi muscle was used to identify neural networks underlying spontaneous, reflex, and learned blinks. The kinetics of viral transfer was studied at sequential 12 hr intervals between 3 and 5 d after inoculation. Rabies virus immunolabeling was combined with the immunohistochemical detection of choline acetyltransferase expression in brainstem motoneurons or Fluoro-Ruby injections in the rubrospinal tract. Virus uptake involved exclusively orbicularis oculi motoneurons in the dorsolateral division of the facial nucleus. At 3-3.5 d, transneuronal transfer involved premotor interneurons of trigeminal, auditory, and vestibular reflex pathways (in medullary and pontine reticular formation, trigeminal nuclei, periolivary and ventral cochlear nuclei, and medial vestibular nuclei), motor pathways (dorsolateral quadrant of contralateral red nucleus and pararubral area), deep cerebellar nuclei (lateral portion of interpositus nucleus and dorsolateral hump ipsilaterally), limbic relays (parabrachial and Kölliker-Fuse nuclei), and oculomotor structures involved in eye-eyelid coordination (oculomotor nucleus, supraoculomotor area, and interstitial nucleus of Cajal). At 4 d, higher order neurons were revealed in trigeminal, auditory, vestibular, and deep cerebellar nuclei (medial, interpositus, and lateral), oculomotor and visual-related structures (Darkschewitsch, nucleus of the posterior commissure, deep layers of superior colliculus, and pretectal area), lateral hypothalamus, and cerebral cortex (particularly in parietal areas). At 4.5 and 5 d the labeling of higher order neurons occurred in hypothalamus, cerebral cortex, and blink-related areas of cerebellar cortex. These results provide a comprehensive picture of the premotor networks mediating reflex, voluntary, and limbic-related eyelid responses and highlight potential sites of motor learning in eyelid classical conditioning.
利用来自右侧眼轮匝肌的狂犬病毒进行逆行跨神经元追踪,以识别自发、反射和习得性眨眼背后的神经网络。在接种后3至5天,每隔12小时研究病毒转移的动力学。狂犬病毒免疫标记与脑干运动神经元中胆碱乙酰转移酶表达的免疫组织化学检测或红核脊髓束中的荧光红宝石注射相结合。病毒摄取仅涉及面神经核背外侧部的眼轮匝肌运动神经元。在3至3.5天时,跨神经元转移涉及三叉神经、听觉和前庭反射通路的运动前中间神经元(在延髓和脑桥网状结构、三叉神经核、橄榄周和腹侧耳蜗核以及内侧前庭核中)、运动通路(对侧红核背外侧象限和红核旁区)、小脑深部核团(同侧间位核外侧部分和背外侧隆起)、边缘中继(臂旁核和 Kölliker-Fuse 核)以及参与眼球-眼睑协调的动眼神经结构(动眼神经核、动眼神经上区和 Cajal 间质核)。在4天时,在三叉神经、听觉、前庭和小脑深部核团(内侧、间位和外侧)、动眼神经和视觉相关结构(达克谢维奇核、后连合核、上丘深层和顶盖前区)、外侧下丘脑和大脑皮层(特别是顶叶区域)中发现了高阶神经元。在4.5天和5天时,高阶神经元的标记出现在下丘脑、大脑皮层和小脑皮层与眨眼相关的区域。这些结果提供了介导反射、自主和边缘相关眼睑反应的运动前网络的全面图景,并突出了眼睑经典条件反射中运动学习的潜在位点。