Suppr超能文献

开放离子通道中的恒定场和恒定梯度。

Constant fields and constant gradients in open ionic channels.

作者信息

Chen D P, Barcilon V, Eisenberg R S

机构信息

Department of Physiology, Rush Medical Center, Chicago, IL 60612.

出版信息

Biophys J. 1992 May;61(5):1372-93. doi: 10.1016/S0006-3495(92)81944-6.

Abstract

Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant.

摘要

离子通过蛋白质中的孔隙进入细胞,这些孔隙是电介质中的孔洞。离子与电介质上感应电荷之间的相互作用能量为许多kT,因此通道和孔隙的介电特性很重要。我们用(三维)能斯特 - 普朗克方程(包括通量和净电荷)来描述离子运动。孔隙中的电势用泊松方程描述,通道壁中的电势用拉普拉斯方程描述,允许感应电荷但不允许永久电荷。利用孔隙的长而窄的形状以及孔隙内容物相对较高的介电常数构建渐近展开式。由此得到的一维方程可以进行数值积分;当通道短或长(与德拜长度相比)时可以进行分析。如果感应电荷小,例如通道短或总浓度梯度为零时,可导出传统的恒定场方程。如果通道长,则可导出浓度的恒定梯度。给出了与实验直接可比的电流与电压、反转电势与浓度以及斜率电导与浓度的关系图。这种介电理论很容易检验:其参数可通过传统的恒定场测量来确定。当施加总浓度梯度时,介电理论预测的电流 - 电压关系与恒定场理论有很大不同,通常更线性。数值分析表明,当且仅当感应电荷可忽略不计,即电场在空间上恒定时,离子与通道的相互作用可以用平均电势来描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c7/1260399/c35254831cc6/biophysj00102-0323-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验