Suppr超能文献

识别RNA高阶结构的限制因素:比较序列分析方法的持续发展与应用

Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods.

作者信息

Gutell R R, Power A, Hertz G Z, Putz E J, Stormo G D

机构信息

MCD Biology, University of Colorado, Boulder 80309.

出版信息

Nucleic Acids Res. 1992 Nov 11;20(21):5785-95. doi: 10.1093/nar/20.21.5785.

Abstract

Comparative sequence analysis addresses the problem of RNA folding and RNA structural diversity, and is responsible for determining the folding of many RNA molecules, including 5S, 16S, and 23S rRNAs, tRNA, RNAse P RNA, and Group I and II introns. Initially this method was utilized to fold these sequences into their secondary structures. More recently, this method has revealed numerous tertiary correlations, elucidating novel RNA structural motifs, several of which have been experimentally tested and verified, substantiating the general application of this approach. As successful as the comparative methods have been in elucidating higher-order structure, it is clear that additional structure constraints remain to be found. Deciphering such constraints requires more sensitive and rigorous protocols, in addition to RNA sequence datasets that contain additional phylogenetic diversity and an overall increase in the number of sequences. Various RNA databases, including the tRNA and rRNA sequence datasets, continue to grow in number as well as diversity. Described herein is the development of more rigorous comparative analysis protocols. Our initial development and applications on different RNA datasets have been very encouraging. Such analyses on tRNA, 16S and 23S rRNA are substantiating previously proposed associations and are now beginning to reveal additional constraints on these molecules. A subset of these involve several positions that correlate simultaneously with one another, implying units larger than a basepair can be under a phylogenetic constraint.

摘要

比较序列分析解决了RNA折叠和RNA结构多样性的问题,并负责确定许多RNA分子的折叠方式,包括5S、16S和23S核糖体RNA、转运RNA、核糖核酸酶P RNA以及I类和II类内含子。最初,这种方法被用于将这些序列折叠成二级结构。最近,这种方法揭示了许多三级相关性,阐明了新的RNA结构基序,其中一些已通过实验测试和验证,证实了该方法的普遍适用性。尽管比较方法在阐明高阶结构方面取得了成功,但显然仍有待发现更多的结构限制因素。除了需要包含更多系统发育多样性和序列数量总体增加的RNA序列数据集外,破译这些限制因素还需要更敏感和严格的方案。包括转运RNA和核糖体RNA序列数据集在内的各种RNA数据库在数量和多样性上都在不断增长。本文描述了更严格的比较分析方案的开发。我们最初在不同RNA数据集上的开发和应用非常令人鼓舞。对转运RNA、16S和23S核糖体RNA的此类分析证实了先前提出的关联,并且现在开始揭示对这些分子的更多限制因素。其中一部分涉及几个相互同时相关的位置,这意味着大于碱基对的单元可能受到系统发育限制。

相似文献

5
RNA sequence analysis using covariance models.使用协方差模型进行RNA序列分析。
Nucleic Acids Res. 1994 Jun 11;22(11):2079-88. doi: 10.1093/nar/22.11.2079.

引用本文的文献

3
Motifs in SARS-CoV-2 evolution.SARS-CoV-2 进化中的基序。
RNA. 2023 Dec 18;30(1):1-15. doi: 10.1261/rna.079557.122.
6
Thirteen dubious ways to detect conserved structural RNAs.检测保守结构RNA的十三种可疑方法。
IUBMB Life. 2023 Jun;75(6):471-492. doi: 10.1002/iub.2694. Epub 2022 Dec 10.
7
Pushing the Limits of Nucleic Acid Function.推动核酸功能的极限。
Chemistry. 2022 Dec 20;28(71):e202201737. doi: 10.1002/chem.202201737. Epub 2022 Oct 26.

本文引用的文献

1
STRUCTURE OF A RIBONUCLEIC ACID.核糖核酸的结构
Science. 1965 Mar 19;147(3664):1462-5. doi: 10.1126/science.147.3664.1462.
2
Secondary structure model for 23S ribosomal RNA.23S核糖体RNA的二级结构模型
Nucleic Acids Res. 1981 Nov 25;9(22):6167-89. doi: 10.1093/nar/9.22.6167.
8
Secondary structure of 16S ribosomal RNA.16S核糖体RNA的二级结构
Science. 1981 Apr 24;212(4493):403-11. doi: 10.1126/science.6163215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验