Suppr超能文献

患者对治疗所需人数及其他常见风险降低形式理解的随机对照比较。

A randomized comparison of patients' understanding of number needed to treat and other common risk reduction formats.

作者信息

Sheridan Stacey L, Pignone Michael P, Lewis Carmen L

机构信息

Division of General Medicine and Epidemiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

J Gen Intern Med. 2003 Nov;18(11):884-92. doi: 10.1046/j.1525-1497.2003.21102.x.

Abstract

BACKGROUND

Commentators have suggested that patients may understand quantitative information about treatment benefits better when they are presented as numbers needed to treat (NNT) rather than as absolute or relative risk reductions.

OBJECTIVE

To determine whether NNT helps patients interpret treatment benefits better than absolute risk reduction (ARR), relative risk reduction (RRR), or a combination of all three of these risk reduction presentations (COMBO).

DESIGN

Randomized cross-sectional survey.

SETTING

University internal medicine clinic.

PATIENTS

Three hundred fifty-seven men and women, ages 50 to 80, who presented for health care.

INTERVENTIONS

Subjects were given written information about the baseline risk of a hypothetical "disease Y" and were asked (1) to compare the benefits of two drug treatments for disease Y, stating which provided more benefit; and (2) to calculate the effect of one of those drug treatments on a given baseline risk of disease. Risk information was presented to each subject in one of four randomly allocated risk formats: NNT, ARR, RRR, or COMBO.

MAIN RESULTS

When asked to state which of two treatments provided more benefit, subjects who received the RRR format responded correctly most often (60% correct vs 43% for COMBO, 42% for ARR, and 30% for NNT, P =.001). Most subjects were unable to calculate the effect of drug treatment on the given baseline risk of disease, although subjects receiving the RRR and ARR formats responded correctly more often (21% and 17% compared to 7% for COMBO and 6% for NNT, P =.004).

CONCLUSION

Patients are best able to interpret the benefits of treatment when they are presented in an RRR format with a given baseline risk of disease. ARR also is easily interpreted. NNT is often misinterpreted by patients and should not be used alone to communicate risk to patients.

摘要

背景

评论者指出,当以需治疗人数(NNT)而非绝对或相对风险降低率的形式呈现治疗益处的定量信息时,患者可能会更好地理解这些信息。

目的

确定与绝对风险降低率(ARR)、相对风险降低率(RRR)或这三种风险降低率呈现方式的组合(COMBO)相比,NNT是否能帮助患者更好地理解治疗益处。

设计

随机横断面调查。

地点

大学内科诊所。

患者

357名年龄在50至80岁之间前来就医的男性和女性。

干预措施

向受试者提供关于假设的“疾病Y”基线风险的书面信息,并要求他们(1)比较两种治疗疾病Y的药物治疗的益处,指出哪种治疗提供的益处更多;(2)计算其中一种药物治疗对给定疾病基线风险的影响。风险信息以四种随机分配的风险形式之一呈现给每个受试者:NNT、ARR、RRR或COMBO。

主要结果

当被要求指出两种治疗中哪种提供的益处更多时,接受RRR形式的受试者回答正确的比例最高(60%正确,COMBO为43%,ARR为42%,NNT为30%,P = 0.001)。大多数受试者无法计算药物治疗对给定疾病基线风险的影响,尽管接受RRR和ARR形式的受试者回答正确的比例更高(分别为21%和17%,而COMBO为7%,NNT为6%,P = 0.004)。

结论

当以RRR形式呈现治疗益处并给出疾病的给定基线风险时,患者最能理解治疗益处。ARR也易于理解。NNT经常被患者误解,不应单独用于向患者传达风险。

相似文献

1
A randomized comparison of patients' understanding of number needed to treat and other common risk reduction formats.
J Gen Intern Med. 2003 Nov;18(11):884-92. doi: 10.1046/j.1525-1497.2003.21102.x.
2
3
Effects of presenting risk information in different formats to cardiologists. A Latin American survey.
Arch Cardiol Mex. 2015 Jan-Mar;85(1):3-8. doi: 10.1016/j.acmx.2014.09.003. Epub 2014 Oct 22.
5
Decisions on drug therapies by numbers needed to treat: a randomized trial.
Arch Intern Med. 2005 May 23;165(10):1140-6. doi: 10.1001/archinte.165.10.1140.
6
Randomized trial of dentists' understanding: treatment benefit in absolute numbers vs relative risk reduction.
Braz Oral Res. 2024 Aug 5;38:e070. doi: 10.1590/1807-3107bor-2024.vol38.0070. eCollection 2024.
7
Different ways to describe the benefits of risk-reducing treatments: a randomized trial.
Ann Intern Med. 2007 Jun 19;146(12):848-56. doi: 10.7326/0003-4819-146-12-200706190-00006.
9
Communicating data about the benefits and harms of treatment: a randomized trial.
Ann Intern Med. 2011 Jul 19;155(2):87-96. doi: 10.7326/0003-4819-155-2-201107190-00004.
10
Application of Number Needed to Treat (NNT) as a Measure of Treatment Effect in Respiratory Medicine.
Treat Respir Med. 2006;5(2):79-84. doi: 10.2165/00151829-200605020-00001.

引用本文的文献

1
Scope, Methods, and Overview Findings for the Making Numbers Meaningful Evidence Review of Communicating Probabilities in Health: A Systematic Review.
MDM Policy Pract. 2025 Feb 24;10(1):23814683241255334. doi: 10.1177/23814683241255334. eCollection 2025 Jan-Jun.
2
How Difference Tasks Are Affected by Probability Format, Part 1: A Making Numbers Meaningful Systematic Review.
MDM Policy Pract. 2025 Feb 24;10(1):23814683241294077. doi: 10.1177/23814683241294077. eCollection 2025 Jan-Jun.
3
Laypersons' understanding of statistical concepts commonly used in prescription drug promotion: A review of the research literature.
Res Social Adm Pharm. 2024 Dec;20(12 Pt A):1075-1088. doi: 10.1016/j.sapharm.2024.08.092. Epub 2024 Sep 3.
4
Strategies for communicating scientific evidence on healthcare to managers and the population: a scoping review.
Health Res Policy Syst. 2023 Jul 10;21(1):71. doi: 10.1186/s12961-023-01017-2.
6
Effective communication regarding risk of fracture for individuals at risk of fragility fracture: a scoping review.
Osteoporos Int. 2022 Jan;33(1):13-26. doi: 10.1007/s00198-021-06151-7. Epub 2021 Sep 24.
7
Clinician Conceptualization of the Benefits of Treatments for Individual Patients.
JAMA Netw Open. 2021 Jul 1;4(7):e2119747. doi: 10.1001/jamanetworkopen.2021.19747.
8
Translating Cancer Risk Prediction Models into Personalized Cancer Risk Assessment Tools: Stumbling Blocks and Strategies for Success.
Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2389-2394. doi: 10.1158/1055-9965.EPI-20-0861. Epub 2020 Oct 12.
9
How to communicate evidence to patients.
Drug Ther Bull. 2019 Aug;57(8):119-124. doi: 10.1136/dtb.2019.000008.
10
Number needed to treat: A primer for neurointerventionalists.
Interv Neuroradiol. 2019 Dec;25(6):613-618. doi: 10.1177/1591019919858733. Epub 2019 Jun 27.

本文引用的文献

1
General performance on a numeracy scale among highly educated samples.
Med Decis Making. 2001 Jan-Feb;21(1):37-44. doi: 10.1177/0272989X0102100105.
2
A new scale for assessing perceptions of chance: a validation study.
Med Decis Making. 2000 Jul-Sep;20(3):298-307. doi: 10.1177/0272989X0002000306.
4
Perception of quantitative information for treatment decisions.
Med Decis Making. 2000 Apr-Jun;20(2):228-38. doi: 10.1177/0272989X0002000208.
6
How can we help people make sense of medical data?
Eff Clin Pract. 1999 Jul-Aug;2(4):176-83.
7
Patients' understanding of medical risks: implications for genetic counseling.
Obstet Gynecol. 1999 Jun;93(6):910-4. doi: 10.1016/s0029-7844(98)00567-5.
8
The role of numeracy in understanding the benefit of screening mammography.
Ann Intern Med. 1997 Dec 1;127(11):966-72. doi: 10.7326/0003-4819-127-11-199712010-00003.
10
Number needed to treat is a simple measure of treatment efficacy for clinicians.
J Gen Intern Med. 1996 Jun;11(6):357-9. doi: 10.1007/BF02600047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验