Suppr超能文献

用于心脏动作电位光学记录的“光电极”的设计与应用。

Design and use of an "optrode" for optical recordings of cardiac action potentials.

作者信息

Neunlist M, Zou S Z, Tung L

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205.

出版信息

Pflugers Arch. 1992 Apr;420(5-6):611-7. doi: 10.1007/BF00374641.

Abstract

An optical method was used to measure action potentials from frog ventricle, in vitro, under normal physiological conditions with 0.5-1 mM Ca2+ Ringer's solution. The approach presented in this paper involves a portable fluorimeter coupled to a multimode optical fiber running into a glass pipette ("optrode") to carry both excitation light to and fluorescence from the ventricle stained with the voltage sensitive dye di-4-ANEPPS. A suction technique was used to stabilize the optrode-tissue interface, significantly reducing motion artifacts from the beating ventricle. The typical fractional change in fluorescence intensity for an action potential was -9%. The optical recordings faithfully reproduced membrane action potentials as measured with microelectrode recordings. To confirm further the validity of our method we studied the effect of an increasing stimulation rate on the optical action potential. The amplitude of the action potential did not increase, and the change in action potential duration was similar to published results obtained with microelectrode recordings, suggesting that our optical action potentials are relatively free of motion artifacts. Finally, our optical recordings suggest that during anodal and cathodal point stimulation, the time course of membrane potential differs from that predicted simply by a passive cable model.

摘要

在正常生理条件下,使用含0.5 - 1 mM Ca2+的任氏液,采用光学方法在体外测量青蛙心室的动作电位。本文介绍的方法包括将一台便携式荧光计与一根多模光纤相连,该光纤插入玻璃微吸管(“光极”),以便将激发光传输到用电压敏感染料di - 4 - ANEPPS染色的心室,并将心室发出的荧光传输出来。采用吸引技术稳定光极与组织的界面,显著减少了跳动心室产生的运动伪迹。动作电位时荧光强度的典型分数变化为 - 9%。光学记录忠实地再现了用微电极记录测量的膜动作电位。为进一步证实我们方法的有效性,我们研究了刺激频率增加对光学动作电位的影响。动作电位的幅度没有增加,动作电位持续时间的变化与用微电极记录获得的已发表结果相似,这表明我们的光学动作电位相对没有运动伪迹。最后,我们的光学记录表明,在阳极和阴极点刺激期间,膜电位的时间进程与仅由被动电缆模型预测的不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验