Harold Franklin M
Department of Microbiology, University of Washington, Seattle 98195, USA.
Microbiol Mol Biol Rev. 2005 Dec;69(4):544-64. doi: 10.1128/MMBR.69.4.544-564.2005.
A living cell is not an aggregate of molecules but an organized pattern, structured in space and in time. This article addresses some conceptual issues in the genesis of spatial architecture, including how molecules find their proper location in cell space, the origins of supramolecular order, the role of the genes, cell morphology, the continuity of cells, and the inheritance of order. The discussion is framed around a hierarchy of physiological processes that bridge the gap between nanometer-sized molecules and cells three to six orders of magnitude larger. Stepping stones include molecular self-organization, directional physiology, spatial markers, gradients, fields, and physical forces. The knowledge at hand leads to an unconventional interpretation of biological order. I have come to think of cells as self-organized systems composed of genetically specified elements plus heritable structures. The smallest self that can be fairly said to organize itself is the whole cell. If structure, form, and function are ever to be computed from data at a lower level, the starting point will be not the genome, but a spatially organized system of molecules. This conclusion invites us to reconsider our understanding of what genes do, what organisms are, and how living systems could have arisen on the early Earth.
活细胞不是分子的聚集体,而是一种在空间和时间上结构化的有组织模式。本文探讨了空间结构形成过程中的一些概念性问题,包括分子如何在细胞空间中找到其合适位置、超分子秩序的起源、基因的作用、细胞形态、细胞的连续性以及秩序的遗传。讨论围绕着一系列生理过程展开,这些过程跨越了纳米级分子与比其大3至6个数量级的细胞之间的差距。其中的关键环节包括分子自组织、定向生理学、空间标记、梯度、场和物理力。现有的知识引发了对生物秩序的一种非传统解读。我开始认为细胞是由基因指定的元素加上可遗传结构组成的自组织系统。能够合理地说能自我组织的最小单位是整个细胞。如果要从更低层次的数据来计算结构、形式和功能,起点将不是基因组,而是一个空间上有组织的分子系统。这一结论促使我们重新思考对基因作用、生物体本质以及早期地球上生命系统如何产生的理解。