Suppr超能文献

评估用于预测未来事件的标志物的ROC性能。

Evaluating the ROC performance of markers for future events.

作者信息

Pepe Margaret S, Zheng Yingye, Jin Yuying, Huang Ying, Parikh Chirag R, Levy Wayne C

机构信息

Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., M2-B500, Seattle, WA 98109, USA.

出版信息

Lifetime Data Anal. 2008 Mar;14(1):86-113. doi: 10.1007/s10985-007-9073-x. Epub 2007 Dec 7.

Abstract

Receiver operating characteristic (ROC) curves play a central role in the evaluation of biomarkers and tests for disease diagnosis. Predictors for event time outcomes can also be evaluated with ROC curves, but the time lag between marker measurement and event time must be acknowledged. We discuss different definitions of time-dependent ROC curves in the context of real applications. Several approaches have been proposed for estimation. We contrast retrospective versus prospective methods in regards to assumptions and flexibility, including their capacities to incorporate censored data, competing risks and different sampling schemes. Applications to two datasets are presented.

摘要

受试者工作特征(ROC)曲线在生物标志物评估和疾病诊断测试中起着核心作用。事件时间结局的预测指标也可以用ROC曲线进行评估,但必须考虑标志物测量与事件时间之间的时间间隔。我们在实际应用的背景下讨论了时间依赖性ROC曲线的不同定义。已经提出了几种估计方法。我们在假设和灵活性方面对比了回顾性方法与前瞻性方法,包括它们纳入删失数据、竞争风险和不同抽样方案的能力。还给出了在两个数据集上的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验