Suppr超能文献

癌症微阵列实验预处理中的统计学挑战。

Statistical challenges in preprocessing in microarray experiments in cancer.

作者信息

Owzar Kouros, Barry William T, Jung Sin-Ho, Sohn Insuk, George Stephen L

机构信息

Department of Biostatistics and Bioinformatics, and Cancer and Leukemia Group B Statistical Center, Duke University School of Medicine, 2424 Erwin Road, Durham, NC 27705, USA.

出版信息

Clin Cancer Res. 2008 Oct 1;14(19):5959-66. doi: 10.1158/1078-0432.CCR-07-4532.

Abstract

Many clinical studies incorporate genomic experiments to investigate the potential associations between high-dimensional molecular data and clinical outcome. A critical first step in the statistical analyses of these experiments is that the molecular data are preprocessed. This article provides an overview of preprocessing methods, including summary algorithms and quality control metrics for microarrays. Some of the ramifications and effects that preprocessing methods have on the statistical results are illustrated. The discussions are centered around a microarray experiment based on lung cancer tumor samples with survival as the clinical outcome of interest. The procedures that are presented focus on the array platform used in this study. However, many of these issues are more general and are applicable to other instruments for genome-wide investigation. The discussions here will provide insight into the statistical challenges in preprocessing microarrays used in clinical studies of cancer. These challenges should not be viewed as inconsequential nuisances but rather as important issues that need to be addressed so that informed conclusions can be drawn.

摘要

许多临床研究纳入基因组实验,以调查高维分子数据与临床结果之间的潜在关联。这些实验统计分析的关键第一步是对分子数据进行预处理。本文概述了预处理方法,包括微阵列的汇总算法和质量控制指标。阐述了预处理方法对统计结果的一些影响。讨论围绕一项基于肺癌肿瘤样本的微阵列实验展开,该实验将生存作为感兴趣的临床结果。所介绍的程序侧重于本研究中使用的阵列平台。然而,其中许多问题更为普遍,适用于其他全基因组研究仪器。这里的讨论将深入了解癌症临床研究中微阵列预处理的统计挑战。这些挑战不应被视为无关紧要的麻烦,而应被视为需要解决的重要问题,以便得出明智的结论。

相似文献

1
Statistical challenges in preprocessing in microarray experiments in cancer.
Clin Cancer Res. 2008 Oct 1;14(19):5959-66. doi: 10.1158/1078-0432.CCR-07-4532.
2
A review of statistical methods for preprocessing oligonucleotide microarrays.
Stat Methods Med Res. 2009 Dec;18(6):533-41. doi: 10.1177/0962280209351924.
3
Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.
Comput Methods Programs Biomed. 2013 Aug;111(2):402-9. doi: 10.1016/j.cmpb.2013.04.006. Epub 2013 May 31.
4
Working with Oligonucleotide Arrays.
Methods Mol Biol. 2016;1418:145-59. doi: 10.1007/978-1-4939-3578-9_7.
5
Assessing statistical significance in microarray experiments using the distance between microarrays.
PLoS One. 2009 Jun 16;4(6):e5838. doi: 10.1371/journal.pone.0005838.
6
Ranking analysis for identifying differentially expressed genes.
Genomics. 2011 May;97(5):326-9. doi: 10.1016/j.ygeno.2011.03.002. Epub 2011 Mar 22.
8
mu-CS: an extension of the TM4 platform to manage Affymetrix binary data.
BMC Bioinformatics. 2010 Jun 10;11:315. doi: 10.1186/1471-2105-11-315.
9
Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data.
Biometrics. 2005 Jun;61(2):630-2; discussion 632-4. doi: 10.1111/j.1541-0420.2005.00366.x.
10
Evaluating concentration estimation errors in ELISA microarray experiments.
BMC Bioinformatics. 2005 Jan 26;6:17. doi: 10.1186/1471-2105-6-17.

引用本文的文献

2
A Python Clustering Analysis Protocol of Genes Expression Data Sets.
Genes (Basel). 2022 Oct 12;13(10):1839. doi: 10.3390/genes13101839.
3
4
Identification and Validation of Hub Genes in Acute Pancreatitis and Hypertriglyceridemia.
Diabetes Metab Syndr Obes. 2022 Feb 24;15:559-577. doi: 10.2147/DMSO.S349528. eCollection 2022.
5
Bioinformatics Analysis of Hub Genes and Potential Therapeutic Agents Associated with Gastric Cancer.
Cancer Manag Res. 2021 Nov 30;13:8929-8951. doi: 10.2147/CMAR.S341485. eCollection 2021.
6
Decision theory for precision therapy of breast cancer.
Sci Rep. 2021 Feb 19;11(1):4233. doi: 10.1038/s41598-021-82418-7.
7
Identification of Key Genes in Gastric Cancer by Bioinformatics Analysis.
Biomed Res Int. 2020 Sep 21;2020:7658230. doi: 10.1155/2020/7658230. eCollection 2020.
8
Co-expressed genes enhance precision of receptor status identification in breast cancer patients.
Breast Cancer Res Treat. 2018 Nov;172(2):313-326. doi: 10.1007/s10549-018-4920-x. Epub 2018 Aug 16.
10
FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.
Radiat Res. 2015 Nov;184(5):456-69. doi: 10.1667/RR14089.1. Epub 2015 Oct 21.

本文引用的文献

1
The use of genomics in clinical trial design.
Clin Cancer Res. 2008 Oct 1;14(19):5984-93. doi: 10.1158/1078-0432.CCR-07-4531.
2
Validation of biomarker-based risk prediction models.
Clin Cancer Res. 2008 Oct 1;14(19):5977-83. doi: 10.1158/1078-0432.CCR-07-4534.
3
Validation of analytic methods for biomarkers used in drug development.
Clin Cancer Res. 2008 Oct 1;14(19):5967-76. doi: 10.1158/1078-0432.CCR-07-4535.
8
Probe set algorithms: is there a rational best bet?
BMC Bioinformatics. 2006 Aug 30;7:395. doi: 10.1186/1471-2105-7-395.
9
Adjusting batch effects in microarray expression data using empirical Bayes methods.
Biostatistics. 2007 Jan;8(1):118-27. doi: 10.1093/biostatistics/kxj037. Epub 2006 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验