文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多尖峰序列的多元自回归建模和格兰杰因果分析。

Multivariate autoregressive modeling and granger causality analysis of multiple spike trains.

机构信息

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel.

出版信息

Comput Intell Neurosci. 2010;2010:752428. doi: 10.1155/2010/752428. Epub 2010 Apr 29.


DOI:10.1155/2010/752428
PMID:20454705
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2862319/
Abstract

Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ''hidden" Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method.

摘要

近年来,出现了微电极阵列和光学方法,可以同时记录神经系统不同部位神经元的尖峰活动。对多个神经尖峰序列数据的分析可以从多元时间序列分析的现有方法中受益,这些方法已被证明在 EEG 等连续神经信号的建模和分析中非常有效。然而,这些方法通常不能很好地适应点过程。在这里,我们使用最近关于多元线性非线性泊松尖峰神经元模型中的相关失真的结果,推导出用于拟合“隐藏”多元自回归模型的广义尤尔沃克型方程。我们使用这个新的框架来进行格兰杰因果分析,以提取模拟神经元网络中的定向信息流模式。我们讨论了新方法的相对优点和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/5513dc612c03/CIN2010-752428.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/b2f2aac34fc5/CIN2010-752428.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/a58bf8500fa7/CIN2010-752428.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/5ac2ce06a2d2/CIN2010-752428.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/ee0680e9c963/CIN2010-752428.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/08c4afff8ada/CIN2010-752428.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/aec94a729190/CIN2010-752428.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/5513dc612c03/CIN2010-752428.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/b2f2aac34fc5/CIN2010-752428.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/a58bf8500fa7/CIN2010-752428.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/5ac2ce06a2d2/CIN2010-752428.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/ee0680e9c963/CIN2010-752428.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/08c4afff8ada/CIN2010-752428.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/aec94a729190/CIN2010-752428.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/5513dc612c03/CIN2010-752428.alg.001.jpg

相似文献

[1]
Multivariate autoregressive modeling and granger causality analysis of multiple spike trains.

Comput Intell Neurosci. 2010-4-29

[2]
Analyzing multiple spike trains with nonparametric Granger causality.

J Comput Neurosci. 2009-8

[3]
Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.

J Neurophysiol. 2009-12-23

[4]
Assessing directed information as a method for inferring functional connectivity in neural ensembles.

Annu Int Conf IEEE Eng Med Biol Soc. 2011

[5]
Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method.

BMC Neurosci. 2020-2-12

[6]
On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

PLoS Comput Biol. 2017-2-24

[7]
Modeling multiscale causal interactions between spiking and field potential signals during behavior.

J Neural Eng. 2022-3-7

[8]
A Copula-Based Granger Causality Measure for the Analysis of Neural Spike Train Data.

IEEE/ACM Trans Comput Biol Bioinform. 2018

[9]
Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.

IEEE Trans Neural Syst Rehabil Eng. 2012-8-1

[10]
Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.

Neural Comput. 2018-3

引用本文的文献

[1]
Intracranial directed connectivity links subregions of the prefrontal cortex to major depression.

Nat Commun. 2025-7-9

[2]
Intracranial Directed Connectivity Links Subregions of the Prefrontal Cortex to Major Depression.

medRxiv. 2024-8-8

[3]
Modeling multiscale causal interactions between spiking and field potential signals during behavior.

J Neural Eng. 2022-3-7

[4]
Exact Partial Information Decompositions for Gaussian Systems Based on Dependency Constraints.

Entropy (Basel). 2018-3-30

[5]
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

Proc Natl Acad Sci U S A. 2018-4-9

[6]
Using multivariate cross correlations, Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations.

BMC Ecol. 2016-8-5

[7]
Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory.

J Neurosci. 2015-6-10

[8]
Granger causality-based synaptic weights estimation for analyzing neuronal networks.

J Comput Neurosci. 2015-6

[9]
Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory.

Front Comput Neurosci. 2014-11-13

[10]
nSTAT: open-source neural spike train analysis toolbox for Matlab.

J Neurosci Methods. 2012-9-5

本文引用的文献

[1]
A new correlation-based measure of spike timing reliability.

Neurocomputing (Amst). 2003-6-1

[2]
Correlations and synchrony in threshold neuron models.

Phys Rev Lett. 2010-2-4

[3]
Correlation-distortion based identification of Linear-Nonlinear-Poisson models.

J Comput Neurosci. 2010-8

[4]
Quantifying statistical interdependence by message passing on graphs-part I: one-dimensional point processes.

Neural Comput. 2009-8

[5]
Generating spike trains with specified correlation coefficients.

Neural Comput. 2009-2

[6]
Generation of spike trains with controlled auto- and cross-correlation functions.

Neural Comput. 2009-6

[7]
Analyzing multiple spike trains with nonparametric Granger causality.

J Comput Neurosci. 2009-8

[8]
Spatio-temporal correlations and visual signalling in a complete neuronal population.

Nature. 2008-8-21

[9]
Detecting synfire chain activity using massively parallel spike train recording.

J Neurophysiol. 2008-10

[10]
Simple model of spiking neurons.

IEEE Trans Neural Netw. 2003

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索