Suppr超能文献

多尖峰序列的多元自回归建模和格兰杰因果分析。

Multivariate autoregressive modeling and granger causality analysis of multiple spike trains.

机构信息

Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel.

出版信息

Comput Intell Neurosci. 2010;2010:752428. doi: 10.1155/2010/752428. Epub 2010 Apr 29.

Abstract

Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ''hidden" Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method.

摘要

近年来,出现了微电极阵列和光学方法,可以同时记录神经系统不同部位神经元的尖峰活动。对多个神经尖峰序列数据的分析可以从多元时间序列分析的现有方法中受益,这些方法已被证明在 EEG 等连续神经信号的建模和分析中非常有效。然而,这些方法通常不能很好地适应点过程。在这里,我们使用最近关于多元线性非线性泊松尖峰神经元模型中的相关失真的结果,推导出用于拟合“隐藏”多元自回归模型的广义尤尔沃克型方程。我们使用这个新的框架来进行格兰杰因果分析,以提取模拟神经元网络中的定向信息流模式。我们讨论了新方法的相对优点和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d364/2862319/b2f2aac34fc5/CIN2010-752428.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验