Suppr超能文献

沉降和扩散对金纳米颗粒细胞摄取的影响。

The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles.

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA.

出版信息

Nat Nanotechnol. 2011 Apr 24;6(6):385-91. doi: 10.1038/nnano.2011.58.

Abstract

In vitro experiments typically measure the uptake of nanoparticles by exposing cells at the bottom of a culture plate to a suspension of nanoparticles, and it is generally assumed that this suspension is well-dispersed. However, nanoparticles can sediment, which means that the concentration of nanoparticles on the cell surface may be higher than the initial bulk concentration, and this could lead to increased uptake by cells. Here, we use upright and inverted cell culture configurations to show that cellular uptake of gold nanoparticles depends on the sedimentation and diffusion velocities of the nanoparticles and is independent of size, shape, density, surface coating and initial concentration of the nanoparticles. Generally, more nanoparticles are taken up in the upright configuration than in the inverted one, and nanoparticles with faster sedimentation rates showed greater differences in uptake between the two configurations. Our results suggest that sedimentation needs to be considered when performing in vitro studies for large and/or heavy nanoparticles.

摘要

体外实验通常通过将培养板底部的细胞暴露于纳米颗粒悬浮液中来测量纳米颗粒的摄取,并且通常假定该悬浮液是良好分散的。然而,纳米颗粒会沉降,这意味着细胞表面上的纳米颗粒浓度可能高于初始体相浓度,并且这可能导致细胞摄取增加。在这里,我们使用直立和倒置的细胞培养配置来表明金纳米颗粒的细胞摄取取决于纳米颗粒的沉降和扩散速度,并且与尺寸,形状,密度,表面涂层和纳米颗粒的初始浓度无关。通常,在直立配置中摄取的纳米颗粒比在倒置配置中多,并且沉降速率较快的纳米颗粒在两种配置之间的摄取差异更大。我们的结果表明,在进行大颗粒和/或重颗粒的体外研究时,需要考虑沉降。

相似文献

1
The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles.
Nat Nanotechnol. 2011 Apr 24;6(6):385-91. doi: 10.1038/nnano.2011.58.
3
Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity.
Mol Pharm. 2018 Jun 4;15(6):2372-2383. doi: 10.1021/acs.molpharmaceut.8b00213. Epub 2018 May 10.
5
In vitro studies: Ups and downs of cellular uptake.
Nat Nanotechnol. 2011 Jun 6;6(6):332-3. doi: 10.1038/nnano.2011.81.
6
A Cell-Culture Technique to Encode Glyco-Nanoparticles Selectivity.
Chem Asian J. 2021 Dec 1;16(23):3900-3904. doi: 10.1002/asia.202101015. Epub 2021 Oct 13.
7
Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry.
J Am Chem Soc. 2008 Oct 29;130(43):14139-43. doi: 10.1021/ja805392f. Epub 2008 Oct 1.
9
Impact of Albumin Pre-Coating on Gold Nanoparticles Uptake at Single-Cell Level.
Nanomaterials (Basel). 2022 Feb 23;12(5):749. doi: 10.3390/nano12050749.
10
Uptake of engineered gold nanoparticles into mammalian cells.
Chem Rev. 2014 Jan 22;114(2):1258-88. doi: 10.1021/cr300441a. Epub 2013 Nov 26.

引用本文的文献

3
Exploring the Adhesion Properties of Extracellular Vesicles for Functional Assays.
J Extracell Biol. 2025 Apr 25;4(4):e70042. doi: 10.1002/jex2.70042. eCollection 2025 Apr.
4
Modelling, simulation, and experimental characterization of particle sedimentation inside a horizontal syringe.
Microfluid Nanofluidics. 2025;29(5):28. doi: 10.1007/s10404-025-02802-x. Epub 2025 Apr 15.
5
The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications.
Biomacromolecules. 2025 Apr 14;26(4):2015-2042. doi: 10.1021/acs.biomac.4c01431. Epub 2025 Mar 18.
6
On-demand release of encapsulated ZnO nanoparticles and chemotherapeutics for drug delivery applications.
RSC Pharm. 2024 Nov 6;2(1):82-93. doi: 10.1039/d4pm00189c. eCollection 2025 Jan 21.
8
Targeted Cancer Therapy-on-A-Chip.
Adv Healthc Mater. 2024 Nov;13(29):e2400833. doi: 10.1002/adhm.202400833. Epub 2024 Aug 5.
9
Shape Dependent Therapeutic Potential of Nanoparticulate System: Advance Approach for Drug Delivery.
Curr Pharm Des. 2024;30(33):2606-2618. doi: 10.2174/0113816128314618240628110218.
10
Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems.
Pharmaceutics. 2024 Jun 14;16(6):809. doi: 10.3390/pharmaceutics16060809.

本文引用的文献

2
4
Effect of surface properties on nanoparticle-cell interactions.
Small. 2010 Jan;6(1):12-21. doi: 10.1002/smll.200901158.
8
Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
Acc Chem Res. 2008 Dec;41(12):1842-51. doi: 10.1021/ar800150g.
9
Carbon nanotubes as photoacoustic molecular imaging agents in living mice.
Nat Nanotechnol. 2008 Sep;3(9):557-62. doi: 10.1038/nnano.2008.231. Epub 2008 Aug 17.
10
Gold nanoparticles in biology: beyond toxicity to cellular imaging.
Acc Chem Res. 2008 Dec;41(12):1721-30. doi: 10.1021/ar800035u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验