Department of Ecology and Evolutionary Biology, Princeton Environmental Institute, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14366-70. doi: 10.1073/pnas.1101694108. Epub 2011 Aug 8.
Epidemic theory predicts that the vaccination threshold required to interrupt local transmission of an immunizing infection like measles depends only on the basic reproductive number and hence transmission rates. When the search for optimal strategies is expanded to incorporate economic constraints, the optimum for disease control in a single population is determined by relative costs of infection and control, rather than transmission rates. Adding a spatial dimension, which precludes local elimination unless it can be achieved globally, can reduce or increase optimal vaccination levels depending on the balance of costs and benefits. For weakly coupled populations, local optimal strategies agree with the global cost-effective strategy; however, asymmetries in costs can lead to divergent control optima in more strongly coupled systems--in particular, strong regional differences in costs of vaccination can preclude local elimination even when elimination is locally optimal. Under certain conditions, it is locally optimal to share vaccination resources with other populations.
流行理论预测,要中断麻疹等免疫感染的本地传播,所需的疫苗接种阈值仅取决于基本繁殖数,因此也取决于传播率。当将寻找最佳策略的范围扩大到纳入经济限制时,在单一人群中进行疾病控制的最佳策略取决于感染和控制的相对成本,而不是传播率。增加空间维度(除非能够在全球范围内实现,否则无法实现本地消除)可以根据成本和收益的平衡来降低或提高最佳疫苗接种水平。对于弱耦合人群,局部最优策略与全球具有成本效益的策略一致;但是,成本的不对称性会导致在更强烈耦合的系统中出现不同的控制最优值——特别是,在疫苗接种成本存在强烈区域差异的情况下,即使局部消除是最优的,也可能无法实现本地消除。在某些条件下,与其他人群共享疫苗接种资源是局部最优的。