Suppr超能文献

实现基于模型的脑电/功能磁共振成像数据与现实神经群体网格的配准集成。

Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes.

机构信息

Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2011 Oct 13;369(1952):3785-801. doi: 10.1098/rsta.2011.0080.

Abstract

Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.

摘要

大脑活动可以通过几种非侵入性神经影像学模式来测量,但每种模式在分辨率、对比度和可解释性方面都存在固有局限性。希望通过多模态整合利用已有数据的互补特征来解决这些局限性。然而,由于信号源的不同,纯粹的统计整合可能会出现问题。作为一种替代方法,我们在这里提出了一种基于解剖学合理的皮质网格的先进神经群体模型,该模型具有可自由调节的连接性,通过针对脑电图 (EEG) 的现实头部模型以及基于血氧水平依赖对比的功能磁共振成像 (fMRI BOLD) 的血流动力学模型,实现了适当的信号表达。因此,它可以从相同的神经活动基础模型中同时且真实地预测 EEG 和 fMRI BOLD。作为原理验证,我们在这里研究了增强视觉连接对模拟脑活动的影响。未来,我们计划使用这种神经群体模型来拟合多模态数据。这有望为睡眠、休息和任务条件下大脑的活动提供新的基于模型的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdb/3263777/fb9eee4291e9/rsta20110080-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验