Department of Continental Ecology-Biogeodynamics and Biodiversity Group, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain.
ISME J. 2012 Feb;6(2):343-51. doi: 10.1038/ismej.2011.119. Epub 2011 Sep 8.
Exploring large environmental datasets generated by high-throughput DNA sequencing technologies requires new analytical approaches to move beyond the basic inventory descriptions of the composition and diversity of natural microbial communities. In order to investigate potential interactions between microbial taxa, network analysis of significant taxon co-occurrence patterns may help to decipher the structure of complex microbial communities across spatial or temporal gradients. Here, we calculated associations between microbial taxa and applied network analysis approaches to a 16S rRNA gene barcoded pyrosequencing dataset containing >160 000 bacterial and archaeal sequences from 151 soil samples from a broad range of ecosystem types. We described the topology of the resulting network and defined operational taxonomic unit categories based on abundance and occupancy (that is, habitat generalists and habitat specialists). Co-occurrence patterns were readily revealed, including general non-random association, common life history strategies at broad taxonomic levels and unexpected relationships between community members. Overall, we demonstrated the potential of exploring inter-taxa correlations to gain a more integrated understanding of microbial community structure and the ecological rules guiding community assembly.
探索高通量 DNA 测序技术产生的大型环境数据集需要新的分析方法,以超越对自然微生物群落组成和多样性的基本清单描述。为了研究微生物分类群之间的潜在相互作用,对显著分类群共现模式的网络分析可能有助于破译跨越空间或时间梯度的复杂微生物群落的结构。在这里,我们计算了微生物分类群之间的关联,并将网络分析方法应用于包含来自广泛生态系统类型的 151 个土壤样本的>160,000 个细菌和古菌序列的 16S rRNA 基因条形码焦磷酸测序数据集。我们描述了所得网络的拓扑结构,并基于丰度和占据度(即栖息地广域种和栖息地专性种)定义了操作分类单元类别。共现模式很容易被揭示,包括一般的非随机关联、广泛的分类水平上的常见生活史策略以及群落成员之间意想不到的关系。总的来说,我们展示了探索分类群间相关性的潜力,以获得对微生物群落结构和指导群落组装的生态规则的更综合的理解。