Suppr超能文献

在 1600 到 1850nm 的光学窗口下对深部组织进行的键选择性成像。

Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

J Biophotonics. 2012 Jan;5(1):25-32. doi: 10.1002/jbio.201100102. Epub 2011 Nov 28.

Abstract

We report the employment of an optical window between 1600 nm and 1850 nm for bond-selective deep tissue imaging through harmonic vibrational excitation and acoustic detection of resultant pressure waves. In this window where a local minimum of water absorption resides, we found a 5 times enhancement of photoacoustic signal by first overtone excitation of the methylene group CH(2) at 1730 nm, compared to the second overtone excitation at 1210 nm. The enhancement allows 3D mapping of intramuscular fat with improved contrast and of lipid deposition inside an atherosclerotic artery wall in the presence of blood. Moreover, lipid and protein are differentiated based on the first overtone absorption profiles of CH(2) and methyl group CH(3) in this window.

摘要

我们报告了在 1600nm 至 1850nm 光学窗口下的应用,通过谐波振动激发和对产生的压力波的声学检测实现键选择性的深层组织成像。在这个水吸收局部最小值的窗口中,我们发现通过在 1730nm 激发第一泛频的亚甲基 CH(2),相比于在 1210nm 激发第二泛频,光声信号增强了 5 倍。这种增强使得在有血液存在的情况下,可以改善对比度对肌肉内脂肪进行 3D 绘图,并对动脉粥样硬化血管壁内的脂类沉积进行绘图。此外,在这个窗口中,可以根据 CH(2)和 CH(3)甲基基团的第一泛频吸收谱区分脂质和蛋白质。

相似文献

1
Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm.
J Biophotonics. 2012 Jan;5(1):25-32. doi: 10.1002/jbio.201100102. Epub 2011 Nov 28.
2
Label-free bond-selective imaging by listening to vibrationally excited molecules.
Phys Rev Lett. 2011 Jun 10;106(23):238106. doi: 10.1103/PhysRevLett.106.238106.
3
Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration.
J Biomed Opt. 2012 Sep;17(9):96010-1. doi: 10.1117/1.JBO.17.9.096010.
6
Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves.
Photoacoustics. 2016 Feb 1;4(1):11-21. doi: 10.1016/j.pacs.2016.01.002. eCollection 2016 Mar.
7
Optical absorption spectra and corresponding photoacoustic visualization of exposed peripheral nerves.
J Biomed Opt. 2023 Sep;28(9):097001. doi: 10.1117/1.JBO.28.9.097001. Epub 2023 Sep 4.
8
Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration.
J Phys Chem Lett. 2013 Jul 3;4(13):2177-2185. doi: 10.1021/jz400559a.
9
Noncontact holographic detection for photoacoustic tomography.
J Biomed Opt. 2017 Oct;22(10):1-14. doi: 10.1117/1.JBO.22.10.106007.

引用本文的文献

1
High spectral energy density all-fiber nanosecond pulsed 1.7 μm light source for photoacoustic microscopy.
Photoacoustics. 2025 Jun 16;44:100744. doi: 10.1016/j.pacs.2025.100744. eCollection 2025 Aug.
2
Photothermal optical coherence microscopy for studying lipid architecture in human carotid arteries.
Biomed Opt Express. 2024 Nov 4;15(12):6654-6669. doi: 10.1364/BOE.534800. eCollection 2024 Dec 1.
3
Novel multi-spectral short-wave infrared imaging for assessment of human burn wound depth.
Wound Repair Regen. 2024 Nov-Dec;32(6):979-991. doi: 10.1111/wrr.13221. Epub 2024 Sep 26.
4
Survival intravascular photoacoustic imaging of lipid-rich plaque in cholesterol fed rabbits.
Transl Biophotonics. 2022 Dec;4(4). doi: 10.1002/tbio.202200012. Epub 2022 Sep 4.
5
Optical absorption spectra and corresponding photoacoustic visualization of exposed peripheral nerves.
J Biomed Opt. 2023 Sep;28(9):097001. doi: 10.1117/1.JBO.28.9.097001. Epub 2023 Sep 4.
7
Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine.
J Biomed Opt. 2023 Dec;28(12):121205. doi: 10.1117/1.JBO.28.12.121205. Epub 2023 Jun 8.
8
Advances in Endoscopic Photoacoustic Imaging.
Photonics. 2021 Jul;8(7). doi: 10.3390/photonics8070281. Epub 2021 Jul 16.
9
Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy.
Sensors (Basel). 2022 Feb 3;22(3):1155. doi: 10.3390/s22031155.
10
Review on Laser Technology in Intravascular Imaging and Treatment.
Aging Dis. 2022 Feb 1;13(1):246-266. doi: 10.14336/AD.2021.0711. eCollection 2022 Feb.

本文引用的文献

1
Multimodal Nonlinear Optical Microscopy.
Laser Photon Rev. 2011 Jul;5(4). doi: 10.1002/lpor.201000027.
2
Label-free bond-selective imaging by listening to vibrationally excited molecules.
Phys Rev Lett. 2011 Jun 10;106(23):238106. doi: 10.1103/PhysRevLett.106.238106.
3
Bright and stable near-infrared fluorescent protein for in vivo imaging.
Nat Biotechnol. 2011 Jul 17;29(8):757-61. doi: 10.1038/nbt.1918.
6
In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars.
J Mater Chem. 2011 Jan 1;21(9):2841-2844. doi: 10.1039/C0JM04194G.
7
Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques.
Sci Transl Med. 2011 May 25;3(84):84ra45. doi: 10.1126/scitranslmed.3001577.
8
Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):8943-8. doi: 10.1073/pnas.1014501108. Epub 2011 May 16.
9
Coherent nonlinear optical imaging: beyond fluorescence microscopy.
Annu Rev Phys Chem. 2011;62:507-30. doi: 10.1146/annurev.physchem.012809.103512.
10
Intravascular photoacoustic imaging of human coronary atherosclerosis.
Opt Lett. 2011 Mar 1;36(5):597-9. doi: 10.1364/OL.36.000597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验