Institute for Computational and Applied Mathematics, University of Muenster, Germany.
Neuroimage. 2012 Jul 16;61(4):1364-82. doi: 10.1016/j.neuroimage.2012.04.017. Epub 2012 Apr 17.
The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying framework for current density reconstruction (CDR) approaches comprising most established methods as well as offering promising new methods. Our work examines the performance of fully-Bayesian inference methods for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known source of systematic error of many CDR methods, and the separation of single sources in multiple-source scenarios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications. For these tasks, HBM provides a promising framework and is able to improve upon established CDR methods such as minimum norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where the established methods show crucial errors, promising results are attained. Additionally, we introduce Wasserstein distances as performance measures for the validation of inverse methods in complex source scenarios.
通过测量头部表面感应的电磁场来估计与活动相关的离子电流是一个具有挑战性且严重不适定的反问题。对于通过 EEG/MEG 记录来恢复涉及深层源的脑网络,这尤其如此,这仍然是任何反演方法的一项具有挑战性的任务。最近,分层贝叶斯建模 (HBM) 作为一种统一的框架出现,用于电流密度重建 (CDR) 方法,包括大多数已建立的方法,并提供了有前途的新方法。我们的工作研究了当使用现实的高分辨率有限元 (FE) 头部模型时,由少数焦点源组成的源配置下,完全贝叶斯推断方法对 HBM 的性能。主要关注点是正确的深度定位,这是许多 CDR 方法的系统误差的一个已知来源,以及在多源情况下单个源的分离。这两个方面在神经生理学数据分析和临床应用中都非常重要。对于这些任务,HBM 提供了一个有前途的框架,并能够在许多方面改进已建立的 CDR 方法,如最小范数估计 (MNE) 或 sLORETA。对于具有挑战性的多源情况,这些方法会显示出关键错误,我们可以获得有希望的结果。此外,我们引入了 Wasserstein 距离作为复杂源情况下验证反演方法的性能指标。