Electrical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
Sci Rep. 2012;2:475. doi: 10.1038/srep00475. Epub 2012 Jun 27.
Decade long research in 1D nanowire field effect transistors (FET) shows although it has ultra-low off-state leakage current and a single device uses a very small area, its drive current generation per device is extremely low. Thus it requires arrays of nanowires to be integrated together to achieve appreciable amount of current necessary for high performance computation causing an area penalty and compromised functionality. Here we show that a FET with a nanotube architecture and core-shell gate stacks is capable of achieving the desirable leakage characteristics of the nanowire FET while generating a much larger drive current with area efficiency. The core-shell gate stacks of silicon nanotube FETs tighten the electrostatic control and enable volume inversion mode operation leading to improved short channel behavior and enhanced performance. Our comparative study is based on semi-classical transport models with quantum confinement effects which offers new opportunity for future generation high performance computation.
长达十年的一维纳米线场效应晶体管(FET)研究表明,尽管它具有超低的关态泄漏电流和单个器件使用非常小的面积,但每个器件的驱动电流产生非常低。因此,需要将纳米线阵列集成在一起,以实现高性能计算所需的可观电流,从而导致面积损失和功能受损。在这里,我们展示了一种具有纳米管结构和核壳栅堆栈的 FET,它能够实现纳米线 FET 的理想泄漏特性,同时以更高的面积效率产生更大的驱动电流。硅纳米管 FET 的核壳栅堆栈加强了静电控制,实现了体反转模式操作,从而改善了短沟道行为并提高了性能。我们的比较研究基于具有量子限制效应的半经典输运模型,为下一代高性能计算提供了新的机会。