Suppr超能文献

最大力量训练负荷的确定及其对负荷-力量关系、最大力量和垂直跳跃表现的影响。

Maximum power training load determination and its effects on load-power relationship, maximum strength, and vertical jump performance.

机构信息

Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece.

出版信息

J Strength Cond Res. 2013 May;27(5):1223-33. doi: 10.1519/JSC.0b013e3182654a1c.

Abstract

This study examines the changes in maximum strength, vertical jump performance, and the load-velocity and load-power relationship after a resistance training period using a heavy load and an individual load that maximizes mechanical power output with and without including body mass in power calculations. Forty-three moderately trained men (age: 22.7 ± 2.5 years) were separated into 4 groups, 2 groups of maximum power, 1 where body mass was not included in the calculations of the load that maximizes mechanical power (Pmax - bw, n = 11) and another where body mass was included in the calculations (Pmax + bw, n = 9), a high load group (HL-90%, n = 12), and a control group (C, n = 11). The subjects performed 4-6 sets of jump squat and the repeated-jump exercises for 6 weeks. For the jump squat, the HL-90% group performed 3 repetitions at each set with a load of 90% of 1 repetition maximum (1RM), the Pmax - bw group 5 repetitions with loads 48-58% of 1RM and the Pmax + bw 8 repetitions with loads 20-37% of 1RM. For the repeated jump, all the groups performed 6 repetitions at each set. All training groups improved (p < 0.05) maximum strength in the semisquat exercise (HL-90%: 15.2 ± 7.1, Pmax - bw: 6.6 ± 4.7, Pmax + bw: 6.9 ± 7.1, and C: 0 ± 4.3%) and the HL-90% group presented higher values (p < 0.05) than the other groups did. All training groups improved similarly (p < 0.05) squat (HL-90%: 11.7 ± 7.9, Pmax - bw: 14.5 ± 11.8, Pmax + bw: 11.3 ± 7.9, and C: -2.2 ± 5.5%) and countermovement jump height (HL-90%: 8.6 ± 7.9, Pmax - bw: 10.9 ± 9.4, Pmax + bw: 8.8 ± 4.3, and C: 0.4 ± 6%). The HL-90% and the Pmax - bw group increased (p < 0.05) power output at loads of 20, 35, 50, 65, and 80% of 1RM and the Pmax + bw group at loads of 20 and 35% of 1RM. The inclusion or not of body mass to determine the load that maximizes mechanical power output affects the long-term adaptations differently in the load-power relationship. Thus, training load selection will depend on the required adaptations. However, the use of heavy loads causes greater overall neuromuscular adaptations in moderately trained individuals.

摘要

本研究考察了在使用大负荷和个体负荷(最大功率时不包括或包括体重)进行阻力训练期间最大力量、垂直跳跃表现以及负荷-速度和负荷-功率关系的变化。43 名中等训练水平的男性(年龄:22.7 ± 2.5 岁)被分为 4 组,2 组最大功率,1 组最大功率时不包括体重(Pmax-bw,n=11),另 1 组包括体重(Pmax+ bw,n=9),1 组高负荷组(HL-90%,n=12)和 1 组对照组(C,n=11)。受试者进行了 6 周的 4-6 组深蹲和重复跳跃练习。对于深蹲,HL-90%组每组进行 3 次重复,负荷为 1 次最大重复(1RM)的 90%,Pmax-bw 组负荷为 48-58%的 1RM,Pmax+ bw 组为 20-37%的 1RM,每组进行 8 次重复。对于重复跳跃,所有组在每组中进行 6 次重复。所有训练组的半深蹲运动(HL-90%:15.2 ± 7.1,Pmax-bw:6.6 ± 4.7,Pmax+ bw:6.9 ± 7.1,C:0 ± 4.3%)的最大力量都有所提高(p<0.05),HL-90%组的数值高于其他组(p<0.05)。所有训练组的深蹲(HL-90%:11.7 ± 7.9,Pmax-bw:14.5 ± 11.8,Pmax+ bw:11.3 ± 7.9,C:-2.2 ± 5.5%)和反跳高度(HL-90%:8.6 ± 7.9,Pmax-bw:10.9 ± 9.4,Pmax+ bw:8.8 ± 4.3,C:0.4 ± 6%)都有所提高(p<0.05)。HL-90%和 Pmax-bw 组在负荷为 1RM 的 20%、35%、50%、65%和 80%时,Pmax+ bw 组在负荷为 1RM 的 20%和 35%时,功率输出增加(p<0.05)。确定最大功率时的负荷是否包括或不包括体重会对负荷-功率关系的长期适应性产生不同的影响。因此,训练负荷的选择将取决于所需的适应性。然而,使用大负荷会导致中等训练水平的个体产生更大的整体神经肌肉适应性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验