Department of Computing Science, University of Alberta Edmonton, AB, Canada ; Alberta Innovates Center for Machine Learning, University of Alberta Edmonton, AB, Canada ; General Analytics Inc. Edmonton, AB, Canada.
Front Syst Neurosci. 2012 Nov 9;6:74. doi: 10.3389/fnsys.2012.00074. eCollection 2012.
This study explored various feature extraction methods for use in automated diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance Image (fMRI) data. Each participant's data consisted of a resting state fMRI scan as well as phenotypic data (age, gender, handedness, IQ, and site of scanning) from the ADHD-200 dataset. We used machine learning techniques to produce support vector machine (SVM) classifiers that attempted to differentiate between (1) all ADHD patients vs. healthy controls and (2) ADHD combined (ADHD-c) type vs. ADHD inattentive (ADHD-i) type vs. controls. In different tests, we used only the phenotypic data, only the imaging data, or else both the phenotypic and imaging data. For feature extraction on fMRI data, we tested the Fast Fourier Transform (FFT), different variants of Principal Component Analysis (PCA), and combinations of FFT and PCA. PCA variants included PCA over time (PCA-t), PCA over space and time (PCA-st), and kernelized PCA (kPCA-st). Baseline chance accuracy was 64.2% produced by guessing healthy control (the majority class) for all participants. Using only phenotypic data produced 72.9% accuracy on two class diagnosis and 66.8% on three class diagnosis. Diagnosis using only imaging data did not perform as well as phenotypic-only approaches. Using both phenotypic and imaging data with combined FFT and kPCA-st feature extraction yielded accuracies of 76.0% on two class diagnosis and 68.6% on three class diagnosis-better than phenotypic-only approaches. Our results demonstrate the potential of using FFT and kPCA-st with resting-state fMRI data as well as phenotypic data for automated diagnosis of ADHD. These results are encouraging given known challenges of learning ADHD diagnostic classifiers using the ADHD-200 dataset (see Brown et al., 2012).
本研究探索了各种特征提取方法,用于从功能磁共振成像 (fMRI) 数据中自动诊断注意力缺陷多动障碍 (ADHD)。每位参与者的数据包括静息态 fMRI 扫描以及来自 ADHD-200 数据集的表型数据(年龄、性别、利手、智商和扫描地点)。我们使用机器学习技术生成支持向量机 (SVM) 分类器,试图区分 (1) 所有 ADHD 患者与健康对照组,以及 (2) ADHD 混合型 (ADHD-c) 与 ADHD 注意力不集中型 (ADHD-i) 与对照组。在不同的测试中,我们仅使用表型数据、仅使用成像数据,或者同时使用表型和成像数据。对于 fMRI 数据的特征提取,我们测试了快速傅里叶变换 (FFT)、主成分分析 (PCA) 的不同变体,以及 FFT 和 PCA 的组合。PCA 变体包括时间上的 PCA (PCA-t)、时空上的 PCA (PCA-st) 和核化 PCA (kPCA-st)。所有参与者的基线猜测健康对照组(多数类)的准确率为 64.2%。仅使用表型数据在两分类诊断中的准确率为 72.9%,在三分类诊断中的准确率为 66.8%。仅使用成像数据的诊断效果不如仅使用表型数据的方法。使用表型和成像数据结合联合 FFT 和 kPCA-st 特征提取,在两分类诊断中的准确率为 76.0%,在三分类诊断中的准确率为 68.6%,优于仅使用表型数据的方法。我们的结果表明,使用 FFT 和 kPCA-st 与静息态 fMRI 数据以及表型数据相结合,具有自动诊断 ADHD 的潜力。鉴于使用 ADHD-200 数据集学习 ADHD 诊断分类器的已知挑战(见 Brown 等人,2012),这些结果令人鼓舞。