Departments of Physics and Electrical Engineering, Columbia University, New York, NY 10027, USA.
Nat Mater. 2013 Mar;12(3):207-11. doi: 10.1038/nmat3505. Epub 2012 Dec 2.
Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS(2) is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on/off ratio exceeding 10(8) in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS(2) field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.
二维(2D)原子晶体,如石墨烯和过渡金属二卤化物,已成为具有显著物理性质的一类新材料。与石墨烯不同,单层 MoS(2) 是一种具有直接能隙的非中心对称材料。最近在这种材料中已经证明了强的光致发光、场效应晶体管中超过 10(8)的电流开/关比以及通过光学螺旋度有效控制谷和自旋。在这里,我们在单层 MoS(2) 场效应晶体管中报告了紧密结合的负三离子的光谱鉴定,这是一种由两个电子和一个空穴组成的准粒子。这些准粒子可以用光与谷和自旋极化空穴一起产生,在传统半导体中没有类似物。它们还具有大的结合能(约 20 meV),即使在室温下也很显著。我们的结果为二维原子晶体中的多体相互作用的基础研究以及光电和谷电子学应用开辟了可能性。