文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

设计超顺磁纳米粒子热疗肿瘤的设计图。

Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles.

机构信息

Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, Texas, United States of America.

出版信息

PLoS One. 2013;8(2):e57332. doi: 10.1371/journal.pone.0057332. Epub 2013 Feb 25.


DOI:10.1371/journal.pone.0057332
PMID:23451208
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3581487/
Abstract

A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. Here, we study the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs), with core diameter of 5, 7 and 14 nm, in terms of absolute temperature increase ΔT and specific absorption rate (SAR). These nanoparticles are operated under a broad range of AMF conditions, with frequency f varying between 0.2 and 30 MHz; field strength H ranging from 4 to 10 kA m(-1); and concentration cMNP varying from 0.02 to 3.5 mg ml(-1). At high frequency field (∼30 MHz), non specific heating dominates and ΔT correlates with the electrical conductivity of the medium. At low frequency field (<1 MHz), non specific heating is negligible and the relaxation of the SPIO within the AMF is the sole energy source. We show that the ΔT of the medium grows linearly with cMNP , whereas the SARMNP of the magnetic nanoparticles is independent of cMNP and varies linearly with f and H(2) . Using a computational model for heat transport in a biological tissue, the minimum requirements for local hyperthermia (Ttissue >42°C) and thermal ablation (Ttissue >50°C) are derived in terms of cMNP , operating AMF conditions and blood perfusion. The resulting maps can be used to rationally design hyperthermic treatments and identifying the proper route of administration - systemic versus intratumor injection - depending on the magnetic and biodistribution properties of the nanoparticles.

摘要

已经开发并研究了大量的磁性纳米粒子,在不同的交变磁场(AMF)下用于恶性组织的热疗。然而,磁性热疗的临床应用仍然很少,主要是由于金属纳米粒子的能量转换效率低和所需的高组织浓度。在这里,我们研究了具有 5nm、7nm 和 14nm 核心直径的商业超顺磁性氧化铁纳米粒子(SPIOs)制剂在绝对温升ΔT 和比吸收率(SAR)方面的热性能。这些纳米粒子在广泛的 AMF 条件下运行,频率 f 范围为 0.2 至 30MHz;磁场强度 H 范围为 4 至 10kA m(-1);纳米粒子浓度 cMNP 范围为 0.02 至 3.5mg ml(-1)。在高频场(约 30MHz)下,非特异性加热占主导地位,ΔT 与介质的电导率相关。在低频场(<1MHz)下,非特异性加热可以忽略不计,并且 AMF 中的 SPIO 弛豫是唯一的能量源。我们表明,介质的ΔT 与 cMNP 呈线性增长,而磁性纳米粒子的 SARMNP 与 cMNP 无关,与 f 和 H(2) 呈线性变化。使用生物组织内热传输的计算模型,根据 cMNP、操作 AMF 条件和血液灌注,导出了局部热疗(Ttissue >42°C)和热消融(Ttissue >50°C)的最小要求。生成的地图可用于合理设计热疗,并根据纳米粒子的磁性和生物分布特性确定适当的给药途径-全身与肿瘤内注射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/620695963d70/pone.0057332.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/c664c9c6c629/pone.0057332.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/d06c16c9d8b6/pone.0057332.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/1fafd32d8217/pone.0057332.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/52618037a216/pone.0057332.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/f99ce35e9d32/pone.0057332.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/7f5d2e220e23/pone.0057332.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/620695963d70/pone.0057332.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/c664c9c6c629/pone.0057332.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/d06c16c9d8b6/pone.0057332.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/1fafd32d8217/pone.0057332.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/52618037a216/pone.0057332.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/f99ce35e9d32/pone.0057332.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/7f5d2e220e23/pone.0057332.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ec/3581487/620695963d70/pone.0057332.g007.jpg

相似文献

[1]
Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles.

PLoS One. 2013-2-25

[2]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[3]
High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area.

Pharm Res. 2014-12

[4]
Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.

Med Phys. 2013-6

[5]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[6]
Magnetic Heating Stimulated Cargo Release with Dose Control using Multifunctional MR and Thermosensitive Liposome.

Nanotheranostics. 2019-4-19

[7]
Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles.

Radiol Phys Technol. 2011-7

[8]
Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.

J Neurosurg Spine. 2014-4-4

[9]
Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

J Biomed Mater Res A. 2011-12-30

[10]
N-Hydroxysuccinamide functionalized iron oxide nanoparticles conjugated with 5-flurouracil for hyperthermic therapy of malignant liver cancer cells by DNA repair disruption.

Int J Biol Macromol. 2023-10-1

引用本文的文献

[1]
Computational Modelling of Cancer Nanomedicine: Integrating Hyperthermia Treatment Into a Multiphase Porous-Media Tumour Model.

Int J Numer Method Biomed Eng. 2025-8

[2]
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom.

PLoS One. 2022

[3]
Recent Advancements in Hyperthermia-Driven Controlled Drug Delivery from Nanotherapeutics.

Recent Adv Drug Deliv Formul. 2022

[4]
Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy.

Nanomaterials (Basel). 2022-8-20

[5]
Examining the effect of ions and proteins on the heat dissipation of iron oxide nanocrystals.

RSC Adv. 2018-1-4

[6]
Towards optimal thermal distribution in magnetic hyperthermia.

Sci Rep. 2022-2-22

[7]
A Smart Hyperthermia Nanofiber-Platform-Enabled Sustained Release of Doxorubicin and 17AAG for Synergistic Cancer Therapy.

Int J Mol Sci. 2021-3-3

[8]
Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment.

Nanomaterials (Basel). 2020-9-25

[9]
A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.

J Therm Biol. 2020-7

[10]
Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects.

Sci Rep. 2020-1-24

本文引用的文献

[1]
Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice.

Adv Funct Mater. 2012-10-23

[2]
Analysis of trajectories for targeting of magnetic nanoparticles in blood vessels.

Mol Pharm. 2012-6-15

[3]
Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia.

ACS Nano. 2012-5-22

[4]
Acute and long-term effects of hyperthermia in B16-F10 melanoma cells.

PLoS One. 2012-4-20

[5]
Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment.

ACS Nano. 2012-4-11

[6]
ICP-MS analysis of lanthanide-doped nanoparticles as a non-radiative, multiplex approach to quantify biodistribution and blood clearance.

Biomaterials. 2011-11-17

[7]
MR temperature imaging of nanoshell mediated laser ablation.

Int J Hyperthermia. 2011

[8]
Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution.

J Control Release. 2011-10-26

[9]
Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications.

Small. 2011-9-20

[10]
Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma.

Cancer Res. 2011-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索