Suppr超能文献

海洋盐藻 Nannochloropsis oceanica IMET1 对长期氮饥饿和恢复的响应。

Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery.

机构信息

Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China.

出版信息

Plant Physiol. 2013 Jun;162(2):1110-26. doi: 10.1104/pp.113.214320. Epub 2013 May 1.

Abstract

The Nannochloropsis genus contains oleaginous microalgae that have served as model systems for developing renewable biodiesel. Recent genomic and transcriptomic studies on Nannochloropsis species have provided insights into the regulation of lipid production in response to nitrogen stress. Previous studies have focused on the responses of Nannochloropsis species to short-term nitrogen stress, but the effect of long-term nitrogen deprivation remains largely unknown. In this study, physiological and proteomic approaches were combined to understand the mechanisms by which Nannochloropsis oceanica IMET1 is able to endure long-term nitrate deprivation and its ability to recover homeostasis when nitrogen is amended. Changes of the proteome during chronic nitrogen starvation espoused the physiological changes observed, and there was a general trend toward recycling nitrogen and storage of lipids. This was evidenced by a global down-regulation of protein expression, a retained expression of proteins involved in glycolysis and the synthesis of fatty acids, as well as an up-regulation of enzymes used in nitrogen scavenging and protein turnover. Also, lipid accumulation and autophagy of plastids may play a key role in maintaining cell vitality. Following the addition of nitrogen, there were proteomic changes and metabolic changes observed within 24 h, which resulted in a return of the culture to steady state within 4 d. These results demonstrate the ability of N. oceanica IMET1 to recover from long periods of nitrate deprivation without apparent detriment to the culture and provide proteomic markers for genetic modification.

摘要

微拟球藻属包含产油微藻,它们已被用作开发可再生生物柴油的模式系统。最近对微拟球藻属物种的基因组和转录组研究提供了对氮胁迫下脂质生产调控的深入了解。以前的研究主要集中在微拟球藻物种对短期氮胁迫的响应上,但长期缺氮的影响在很大程度上仍不清楚。在这项研究中,生理和蛋白质组学方法相结合,以了解海洋微拟球藻 IMET1 能够耐受长期硝酸盐剥夺以及在添加氮时恢复体内平衡的机制。在慢性氮饥饿期间,蛋白质组的变化支持了观察到的生理变化,并且存在氮回收和脂质储存的一般趋势。这表现在蛋白质表达的全面下调、糖酵解和脂肪酸合成中涉及的蛋白质的保留表达,以及氮吸收和蛋白质周转中使用的酶的上调。此外,质体中脂质的积累和自噬可能在维持细胞活力方面发挥关键作用。在添加氮后,在 24 小时内观察到蛋白质组和代谢变化,这导致在 4 天内培养物恢复到稳定状态。这些结果表明,海洋微拟球藻 IMET1 能够从长时间的硝酸盐剥夺中恢复过来,而对培养物没有明显的损害,并为遗传修饰提供了蛋白质组学标记。

相似文献

1
Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery.
Plant Physiol. 2013 Jun;162(2):1110-26. doi: 10.1104/pp.113.214320. Epub 2013 May 1.
2
Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress.
Bioresour Technol. 2013 Feb;130:731-8. doi: 10.1016/j.biortech.2012.11.116. Epub 2012 Dec 6.
4
The Microalga during Transition from Quiescence to Autotrophy in Response to Nitrogen Availability.
Plant Physiol. 2020 Feb;182(2):819-839. doi: 10.1104/pp.19.00854. Epub 2019 Nov 18.
5
Novel Insight of Nitrogen Deprivation Affected Lipid Accumulation by Genome-Wide Lactylation in .
J Agric Food Chem. 2023 Jul 5;71(26):10107-10123. doi: 10.1021/acs.jafc.3c00122. Epub 2023 Jun 21.
6
Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
Bioresour Technol. 2014 Sep;167:503-9. doi: 10.1016/j.biortech.2014.06.047. Epub 2014 Jun 20.
7
The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes.
Bioresour Technol. 2015 Mar;179:483-489. doi: 10.1016/j.biortech.2014.12.012. Epub 2014 Dec 11.

引用本文的文献

1
Genomic and transcriptomic insights into the molecular responses of a biocrust-derived oleaginous microalga sp. WL1 to nitrogen depletion and recovery.
Synth Syst Biotechnol. 2025 Jun 14;10(4):1160-1171. doi: 10.1016/j.synbio.2025.06.004. eCollection 2025 Dec.
2
3
Systematic approach for dissecting promoters and designing transform systems in microalgae.
Microb Cell Fact. 2025 May 29;24(1):127. doi: 10.1186/s12934-025-02700-5.
4
Transcriptome Analysis of the Harmful Dinoflagellate Under Varied Nutrient Stress Conditions.
Microorganisms. 2024 Dec 22;12(12):2665. doi: 10.3390/microorganisms12122665.
5
Transcriptomic Analysis Reveals the Effect of Urea on Metabolism of .
Life (Basel). 2024 Jun 24;14(7):797. doi: 10.3390/life14070797.
7
Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities.
Biotechnol Biofuels Bioprod. 2024 Jan 23;17(1):10. doi: 10.1186/s13068-024-02461-0.
8
Genome-wide adenine N6-methylation map reveals epigenomic regulation of lipid accumulation in Nannochloropsis.
Plant Commun. 2024 Mar 11;5(3):100773. doi: 10.1016/j.xplc.2023.100773. Epub 2023 Nov 24.
10
Coordinating Carbon Metabolism and Cell Cycle of with Light Strategies under Nitrogen Recovery.
Microorganisms. 2021 Nov 30;9(12):2480. doi: 10.3390/microorganisms9122480.

本文引用的文献

1
Inorganic carbon acquisition and its energization in eustigmatophyte algae.
Funct Plant Biol. 2002 Apr;29(3):271-277. doi: 10.1071/PP01181.
2
Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress.
Bioresour Technol. 2013 Feb;130:731-8. doi: 10.1016/j.biortech.2012.11.116. Epub 2012 Dec 6.
5
High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21265-9. doi: 10.1073/pnas.1105861108. Epub 2011 Nov 28.
7
Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase.
Nature. 2011 Nov 2;479(7372):194-9. doi: 10.1038/nature10568.
9
Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.
Plant Physiol. 2010 Dec;154(4):1737-52. doi: 10.1104/pp.110.165159. Epub 2010 Oct 8.
10
An outlook on microalgal biofuels.
Science. 2010 Aug 13;329(5993):796-9. doi: 10.1126/science.1189003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验