Suppr超能文献

膜电位介导纳米颗粒与细胞的结合。

Membrane potential mediates the cellular binding of nanoparticles.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA.

出版信息

Nanoscale. 2013 Jul 7;5(13):5879-86. doi: 10.1039/c3nr01667f. Epub 2013 May 22.

Abstract

The use of nanoparticles for cellular therapeutic or sensing applications requires nanoparticles to bind, or adhere, to the cell surface. While nanoparticle parameters such as size, shape, charge, and composition are important factors in cellular binding, the cell itself must also be considered. All cells have an electrical potential across the plasma membrane driven by an ion gradient. Under standard conditions the ion gradient will result in a -10 to -100 mV potential across the membrane with a net negative charge on the cytosolic face. Using a combination of flow cytometry and fluorescence microscopy experiments and dissipative particle dynamics simulations, we have found that a decrease in membrane potential leads to decreased cellular binding of anionic nanoparticles. The decreased cellular binding of anionic nanoparticles is a general phenomenon, independent of depolarization method, nanoparticle composition, and cell type. Increased membrane potential reverses this trend resulting in increased binding of anionic nanoparticles. The cellular binding of cationic nanoparticles is minimally affected by membrane potential due to the interaction of cationic nanoparticles with cell surface proteins. The influence of membrane potential on the cellular binding of nanoparticles is especially important when considering the use of nanoparticles in the treatment or detection of diseases, such as cancer, in which the membrane potential is decreased.

摘要

纳米粒子在细胞治疗或传感应用中的使用要求纳米粒子与细胞表面结合或黏附。虽然纳米粒子的参数(如大小、形状、电荷和组成)是细胞结合的重要因素,但细胞本身也必须被考虑。所有细胞的质膜两侧都存在由离子梯度驱动的跨膜电势。在标准条件下,离子梯度将导致膜两侧的电势差为-10 至-100 mV,细胞质面带净负电荷。我们通过组合使用流式细胞术和荧光显微镜实验以及耗散粒子动力学模拟,发现膜电势的降低会导致阴离子纳米粒子与细胞的结合减少。阴离子纳米粒子与细胞的结合减少是一种普遍现象,与去极化方法、纳米粒子组成和细胞类型无关。增加膜电势会逆转这种趋势,导致阴离子纳米粒子的结合增加。阳离子纳米粒子与细胞表面蛋白的相互作用使得阳离子纳米粒子的细胞结合受膜电势影响很小。当考虑将纳米粒子用于癌症等疾病的治疗或检测时,膜电势对纳米粒子的细胞结合的影响尤其重要,因为在这些疾病中膜电势会降低。

相似文献

1
Membrane potential mediates the cellular binding of nanoparticles.
Nanoscale. 2013 Jul 7;5(13):5879-86. doi: 10.1039/c3nr01667f. Epub 2013 May 22.
2
Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
Acc Chem Res. 2014 Aug 19;47(8):2651-9. doi: 10.1021/ar500190q. Epub 2014 Jul 11.
3
Cellular binding of nanoparticles disrupts the membrane potential.
RSC Adv. 2015 Jan 1;5(18):13660-13666. doi: 10.1039/C4RA15727C.
4
Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes.
J Phys Chem B. 2012 Aug 2;116(30):8901-7. doi: 10.1021/jp304630q. Epub 2012 Jul 20.
6
Interaction of Mat-8 (FXYD-3) with Na+/K+-ATPase in colorectal cancer cells.
Biol Pharm Bull. 2007 Apr;30(4):648-54. doi: 10.1248/bpb.30.648.
7
8
Silica nanoparticle supported lipid bilayers for gene delivery.
Chem Commun (Camb). 2009 Sep 14(34):5100-2. doi: 10.1039/b911472f. Epub 2009 Jul 28.

引用本文的文献

2
Nanoparticle accumulation and penetration in 3D tumor models: the effect of size, shape, and surface charge.
Front Cell Dev Biol. 2025 Jan 24;12:1520078. doi: 10.3389/fcell.2024.1520078. eCollection 2024.
4
Novel intraoperative near-infrared imaging strategy to identify abnormalities in the anterior mediastinum.
J Cardiothorac Surg. 2022 Dec 9;17(1):302. doi: 10.1186/s13019-022-02054-8.
5
Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression.
Front Oncol. 2022 Mar 14;12:846917. doi: 10.3389/fonc.2022.846917. eCollection 2022.
6
Embracing nanomaterials' interactions with the innate immune system.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Nov;13(6):e1719. doi: 10.1002/wnan.1719. Epub 2021 Apr 13.
9
Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives.
Acta Pharm Sin B. 2018 Oct;8(6):862-880. doi: 10.1016/j.apsb.2018.05.006. Epub 2018 May 18.
10
Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model.
ACS Omega. 2018 Oct 31;3(10):13567-13575. doi: 10.1021/acsomega.8b01514. Epub 2018 Oct 19.

本文引用的文献

1
Beating cancer in multiple ways using nanogold.
Chem Soc Rev. 2011 Jul;40(7):3391-404. doi: 10.1039/c0cs00180e. Epub 2011 May 31.
2
We have a new publisher: John Wiley & Sons.
Biochem Mol Biol Educ. 2007 Jan;35(1):1. doi: 10.1002/bmb.20.
3
Biocompatible quantum dots for biological applications.
Chem Biol. 2011 Jan 28;18(1):10-24. doi: 10.1016/j.chembiol.2010.11.013.
4
Strategies for the intracellular delivery of nanoparticles.
Chem Soc Rev. 2011 Jan;40(1):233-45. doi: 10.1039/c0cs00003e. Epub 2010 Sep 30.
5
Effect of nanoparticle surface charge at the plasma membrane and beyond.
Nano Lett. 2010 Jul 14;10(7):2543-8. doi: 10.1021/nl101140t.
6
Gold nanoparticles for biology and medicine.
Angew Chem Int Ed Engl. 2010 Apr 26;49(19):3280-94. doi: 10.1002/anie.200904359.
7
Ion channels and the hallmarks of cancer.
Trends Mol Med. 2010 Mar;16(3):107-21. doi: 10.1016/j.molmed.2010.01.005. Epub 2010 Feb 16.
8
Effect of surface properties on nanoparticle-cell interactions.
Small. 2010 Jan;6(1):12-21. doi: 10.1002/smll.200901158.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验