School of Natural Sciences, University of California, Merced, CA, USA.
Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced, CA, USA.
J Biol Eng. 2013 Jul 2;7:18. doi: 10.1186/1754-1611-7-18. eCollection 2013.
The generation of micro- and nano-topography similar to those found in the extra cellular matrix of three-dimensional tissues is one technique used to recapitulate the cell-tissue physiology found in the native tissues. Despite the fact that ample studies have been conducted on the physiological significance of endothelial cells alignment parallel to shear stress, as this is the normal physiologic arrangement for healthy arterial EC, very few studies have examined the use of topographical signals to initiate endothelial cell alignment. Here, we have examined the ability for our mouse embryonic stem cell-derived endothelial cells (ESC-EC) to align on various microchip topographical systems. Briefly, we generated metal molds with 'wrinkled' topography using 1) 15 nm and 2) 30 nm of gold coating on the pre-strained polystryene (PS) sheets. After thermal-induced shrinkage of the PS sheets, polydimethylsiloxane (PDMS) microchips were then generated from the wrinkled molds. Using similar Shrink™-based technology, 3) larger selectively crazed acetone-etched lines in the PS sheets, and 4) fully crazed acetone-treated PS sheets of stochastic topographical morphology were also generated. The 15 nm and 30 nm gold coating generated 'wrinkles' of uniaxial anisotropic channels at nano-scaled widths while the crazing generated micron-sized channels. The ESC-EC were able to respond and align on the 320 nm, 510 nm, and the acetone-etched 10.5 μm channels, but not on the fully 'crazed' topographies. Moreover, the ESC-EC aligned most robustly on the wrinkles, and preferentially to ridge edges on the 10.5 μm-sized channels. The ability to robustly align EC on topographical surfaces enables a variety of controlled physiological studies of EC-EC and EC-ECM contact guidance, as well as having potential applications for the rapid endothelialization of stents and vascular grafts.
生成类似于三维组织细胞外基质的微观和纳米形貌是一种用来再现天然组织中细胞-组织生理学的技术。尽管已经有大量研究探讨了内皮细胞与剪切力平行排列的生理意义,因为这是健康动脉 EC 的正常生理排列,但很少有研究探讨利用地形信号来启动内皮细胞排列。在这里,我们研究了我们的小鼠胚胎干细胞衍生的内皮细胞 (ESC-EC) 在各种微芯片地形系统上排列的能力。简而言之,我们使用 1)15nm 和 2)30nm 的金涂层在预拉伸的聚苯乙烯 (PS) 片上生成具有“皱纹”形貌的金属模具。在 PS 片热诱导收缩后,然后从褶皱模具生成聚二甲基硅氧烷 (PDMS) 微芯片。使用类似的 Shrink™技术,3)PS 片上选择性地产生更大的丙酮刻蚀线裂纹,以及 4)完全产生随机形貌的丙酮处理 PS 片的随机形貌裂纹。15nm 和 30nm 金涂层在纳米尺度宽度下产生单轴各向异性通道的“皱纹”,而开裂则产生微米尺度的通道。ESC-EC 能够对 320nm、510nm 和丙酮刻蚀 10.5μm 通道做出响应并排列,而不能对完全“开裂”的形貌做出响应。此外,ESC-EC 在皱纹上排列得最牢固,并且在 10.5μm 大小的通道上优先沿脊边缘排列。在地形表面上牢固地排列 EC 的能力能够对 EC-EC 和 EC-ECM 接触引导进行各种受控的生理研究,并且具有在支架和血管移植物中快速内皮化的潜在应用。