Department of Biology, Stanford University, Stanford, CA 94305, United States.
Curr Opin Cell Biol. 2013 Dec;25(6):717-23. doi: 10.1016/j.ceb.2013.07.010. Epub 2013 Aug 2.
Commitment to division requires that cells sense, interpret, and respond appropriately to multiple signals. In most eukaryotes, cells commit to division in G1 before DNA replication. Beyond a point, known as Start in yeast and the restriction point in mammals, cells will proceed through the cell cycle despite changes in upstream signals. In metazoans, misregulated G1 control can lead to developmental problems or disease, so it is important to understand how cells decipher the myriad external and internal signals that contribute to the fundamental all-or-none decision to divide. Extensive study of G1 control in the budding yeast Saccharomyces cerevisiae and mammalian culture systems has revealed highly similar networks regulating commitment. However, protein sequences of functional orthologs often indicate a total lack of conservation suggesting significant evolution of G1 control. Here, we review recent studies defining the conserved and diverged features of G1 control and highlight systems-level aspects that may be common to other biological regulatory networks.
细胞分裂的承诺要求细胞感知、解释和适当地对多种信号作出反应。在大多数真核生物中,细胞在 DNA 复制之前的 G1 期就承诺进行分裂。在酵母中的起始点和哺乳动物中的限制点之后,细胞会继续通过细胞周期,尽管上游信号发生了变化。在多细胞生物中,G1 控制的失调可能导致发育问题或疾病,因此了解细胞如何解读导致分裂的全有或全无基本决策的无数外部和内部信号是很重要的。对芽殖酵母酿酒酵母和哺乳动物培养系统中 G1 控制的广泛研究揭示了调节细胞分裂的高度相似的网络。然而,功能同源蛋白的序列通常表明完全没有保守性,这表明 G1 控制发生了显著的进化。在这里,我们回顾了最近定义 G1 控制的保守和分化特征的研究,并强调了可能与其他生物调节网络共有的系统水平方面。