Suppr超能文献

新的网络拓扑方法揭示了乳腺癌中的差异相关模式。

New network topology approaches reveal differential correlation patterns in breast cancer.

作者信息

Bockmayr Michael, Klauschen Frederick, Györffy Balazs, Denkert Carsten, Budczies Jan

机构信息

Institute for Pathology, Charité University Hospital Berlin, Charitéplatz 1, 10117 Berlin, Germany.

出版信息

BMC Syst Biol. 2013 Aug 15;7:78. doi: 10.1186/1752-0509-7-78.

Abstract

BACKGROUND

Analysis of genome-wide data is often carried out using standard methods such as differential expression analysis, clustering analysis and heatmaps. Beyond that, differential correlation analysis was suggested to identify changes in the correlation patterns between disease states. The detection of differential correlation is a demanding task, as the number of entries in the gene-by-gene correlation matrix is large. Currently, there is no gold standard for the detection of differential correlation and statistical validation.

RESULTS

We developed two untargeted algorithms (DCloc and DCglob) that identify differential correlation patterns by comparing the local or global topology of correlation networks. Construction of networks from correlation structures requires fixing of a correlation threshold. Instead of a single cutoff, the algorithms systematically investigate a series of correlation thresholds and permit to detect different kinds of correlation changes at the same level of significance: strong changes of a few genes and moderate changes of many genes. Comparing the correlation structure of 208 ER- breast carcinomas and 208 ER+ breast carcinomas, DCloc detected 770 differentially correlated genes with a FDR of 12.8%, while DCglob detected 630 differentially correlated genes with a FDR of 12.1%. In two-fold cross-validation, the reproducibility of the list of the top 5% differentially correlated genes in 140 ER- tumors and in 140 ER+ tumors was 49% for DCloc and 33% for DCglob.

CONCLUSIONS

We developed two correlation network topology based algorithms for the detection of differential correlations in different disease states. Clusters of differentially correlated genes could be interpreted biologically and included the marker genes hydroxyprostaglandin dehydrogenase (PGDH) and acyl-CoA synthetase medium chain 1 (ACSM1) of invasive apocrine carcinomas that were differentially correlated, but not differentially expressed. Using random subsampling and cross-validation, DCloc and DCglob were shown to identify specific and reproducible lists of differentially correlated genes.

摘要

背景

全基因组数据分析通常使用标准方法进行,如差异表达分析、聚类分析和热图。除此之外,有人建议使用差异相关性分析来识别疾病状态之间相关性模式的变化。差异相关性的检测是一项艰巨的任务,因为基因与基因相关性矩阵中的条目数量很大。目前,差异相关性检测和统计验证尚无金标准。

结果

我们开发了两种非靶向算法(DCloc和DCglob),通过比较相关网络的局部或全局拓扑结构来识别差异相关性模式。从相关结构构建网络需要确定一个相关性阈值。这两种算法不是使用单一的截止值,而是系统地研究一系列相关性阈值,并允许在相同的显著性水平上检测不同类型的相关性变化:少数基因的强烈变化和许多基因的中度变化。比较208例雌激素受体阴性(ER-)乳腺癌和208例雌激素受体阳性(ER+)乳腺癌的相关结构,DCloc检测到770个差异相关基因,错误发现率(FDR)为12.8%,而DCglob检测到630个差异相关基因,FDR为12.1%。在二倍交叉验证中,DCloc在140例ER-肿瘤和140例ER+肿瘤中,前5%差异相关基因列表的重现性为49%,DCglob为33%。

结论

我们开发了两种基于相关网络拓扑结构的算法,用于检测不同疾病状态下的差异相关性。差异相关基因簇可以从生物学角度进行解释,包括浸润性大汗腺癌的标记基因羟前列腺素脱氢酶(PGDH)和酰基辅酶A合成酶中链1(ACSM1),它们差异相关但无差异表达。通过随机子采样和交叉验证,DCloc和DCglob被证明能够识别差异相关基因的特定且可重现的列表。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e324/3848818/9220d93ade83/1752-0509-7-78-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验