Suppr超能文献

三维生物标本的亚毫秒二次谐波全息成像。

Submillisecond second harmonic holographic imaging of biological specimens in three dimensions.

机构信息

School of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Chemistry, Colorado State University, Fort Collins, CO 80521.

出版信息

Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18391-6. doi: 10.1073/pnas.1306856110. Epub 2013 Oct 30.

Abstract

Optical microscopy has played a critical role for discovery in biomedical sciences since Hooke's introduction of the compound microscope. Recent years have witnessed explosive growth in optical microscopy tools and techniques. Information in microscopy is garnered through contrast mechanisms, usually absorption, scattering, or phase shifts introduced by spatial structure in the sample. The emergence of nonlinear optical contrast mechanisms reveals new information from biological specimens. However, the intensity dependence of nonlinear interactions leads to weak signals, preventing the observation of high-speed dynamics in the 3D context of biological samples. Here, we show that for second harmonic generation imaging, we can increase the 3D volume imaging speed from sub-Hertz speeds to rates in excess of 1,500 volumes imaged per second. This transformational capability is possible by exploiting coherent scattering of second harmonic light from an entire specimen volume, enabling new observational capabilities in biological systems.

摘要

光学显微镜自 Hooke 引入复合显微镜以来,在生物医学科学的发现中发挥了关键作用。近年来,光学显微镜工具和技术呈爆炸式增长。显微镜中的信息是通过对比度机制获得的,通常是通过样品中的空间结构引入的吸收、散射或相移。非线性光学对比度机制的出现揭示了生物标本的新信息。然而,非线性相互作用的强度依赖性导致信号较弱,阻止了在生物样本的 3D 环境中观察高速动力学。在这里,我们表明,对于二次谐波产生成像,我们可以将 3D 体积成像速度从亚赫兹速度提高到每秒超过 1500 个体积成像的速度。通过利用二次谐波光从整个样品体积的相干散射,这种变革性的能力成为可能,从而在生物系统中实现新的观测能力。

相似文献

1
Submillisecond second harmonic holographic imaging of biological specimens in three dimensions.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18391-6. doi: 10.1073/pnas.1306856110. Epub 2013 Oct 30.
2
Label-free second harmonic generation holographic microscopy of biological specimens.
Opt Express. 2010 May 10;18(10):9840-51. doi: 10.1364/OE.18.009840.
3
Quantitative phase imaging with scanning holographic microscopy: an experimental assessment.
Biomed Eng Online. 2006 Nov 28;5:63. doi: 10.1186/1475-925X-5-63.
4
Harmonic holography: a new holographic principle.
Appl Opt. 2008 Feb 1;47(4):A103-10. doi: 10.1364/ao.47.00a103.
6
Movies of cellular and sub-cellular motion by digital holographic microscopy.
Biomed Eng Online. 2006 Mar 23;5:21. doi: 10.1186/1475-925X-5-21.
9
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).
J Opt Soc Am A Opt Image Sci Vis. 2015 Nov 1;32(11):2156-68. doi: 10.1364/JOSAA.32.002156.
10
Visualization of fast-moving cells in vivo using digital holographic video microscopy.
J Biomed Opt. 2008 Jan-Feb;13(1):014007. doi: 10.1117/1.2841050.

引用本文的文献

1
Fourier synthesis optical diffraction tomography for kilohertz rate volumetric imaging.
Sci Adv. 2025 Aug 15;11(33):eadr8004. doi: 10.1126/sciadv.adr8004. Epub 2025 Aug 13.
2
Statistical estimation theory detection limits for label-free imaging.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22716. doi: 10.1117/1.JBO.29.S2.S22716. Epub 2024 Sep 5.
3
Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy.
Sensors (Basel). 2024 Feb 29;24(5):1594. doi: 10.3390/s24051594.
4
Harmonic optical tomography of nonlinear structures.
Nat Photonics. 2020 Sep;14(9):564-569. doi: 10.1038/s41566-020-0638-5. Epub 2020 Jun 1.
5
Demonstration of flat-top beam illumination in widefield multiphoton microscopy.
J Biomed Opt. 2019 Nov;25(1):1-8. doi: 10.1117/1.JBO.25.1.014503.
6
Fluorescent coherent diffractive imaging with accelerating light sheets.
Opt Express. 2019 Apr 29;27(9):13015-13030. doi: 10.1364/OE.27.013015.
7
Label-free and live cell imaging by interferometric scattering microscopy.
Chem Sci. 2018 Feb 9;9(10):2690-2697. doi: 10.1039/c7sc04733a. eCollection 2018 Mar 14.
10
Superresolved multiphoton microscopy with spatial frequency-modulated imaging.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6605-10. doi: 10.1073/pnas.1602811113. Epub 2016 May 26.

本文引用的文献

1
High-speed 2D and 3D fluorescence microscopy of cardiac myocytes.
Opt Express. 2011 Jul 18;19(15):13839-47. doi: 10.1364/OE.19.013839.
2
Deep and fast live imaging with two-photon scanned light-sheet microscopy.
Nat Methods. 2011 Jul 17;8(9):757-60. doi: 10.1038/nmeth.1652.
3
Measuring and interpreting neuronal correlations.
Nat Neurosci. 2011 Jun 27;14(7):811-9. doi: 10.1038/nn.2842.
4
Imaging voltage in neurons.
Neuron. 2011 Jan 13;69(1):9-21. doi: 10.1016/j.neuron.2010.12.010.
5
Second-harmonic generation imaging of membrane potential with retinal analogues.
Biophys J. 2011 Jan 5;100(1):232-42. doi: 10.1016/j.bpj.2010.11.021.
7
Label-free second harmonic generation holographic microscopy of biological specimens.
Opt Express. 2010 May 10;18(10):9840-51. doi: 10.1364/OE.18.009840.
8
High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision.
Nat Methods. 2010 May;7(5):399-405. doi: 10.1038/nmeth.1453. Epub 2010 Apr 18.
10
Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity.
Nat Neurosci. 2008 Jun;11(6):713-20. doi: 10.1038/nn.2116. Epub 2008 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验