Suppr超能文献

基于A模式扫描相似度的黄斑光学相干断层扫描图像的可变形配准

DEFORMABLE REGISTRATION OF MACULAR OCT USING A-MODE SCAN SIMILARITY.

作者信息

Chen Min, Lang Andrew, Sotirchos Elias, Ying Howard S, Calabresi Peter A, Prince Jerry L, Carass Aaron

机构信息

Image Analysis and Communications Laboratory, The Johns Hopkins University.

Department of Neurology, The Johns Hopkins School of Medicine.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:476-479. doi: 10.1109/ISBI.2013.6556515.

Abstract

Optical coherence tomography (OCT) of the macular cube has become an increasingly important tool for investigating and managing retinal pathology. One important new area of investigation is the analysis of anatomic variably across a population. Such an analysis on the retina requires the construction of a normalized space, which is generally created through deformable registration of each subject into a common template. Unfortunately, state-of-the-art 3D registration tools fail to adequately spatially normalize retinal OCT images. This work proposes a new deformable registration algorithm for OCT images using the similarity between pairs of A-mode scans. First, a retinal OCT specific affine step is presented, which uses automated landmarks to perform global translations and individual rescaling of all the subject's A-mode scans. Then, a deformable registration using regularized one-dimensional radial basis functions is applied to further align the retinal layers. Results on 15 subjects show the improved accuracy of this approach in comparison to state of the art methods with respect to registration for labeling. Additional results show the ability to generate stereotaxic spaces for retinal OCT.

摘要

黄斑区立方体格光学相干断层扫描(OCT)已成为研究和管理视网膜病变的一项日益重要的工具。一个重要的新研究领域是分析人群中的解剖变异。对视网膜进行这样的分析需要构建一个标准化空间,通常是通过将每个受试者的图像变形配准到一个通用模板来创建。不幸的是,最先进的三维配准工具未能充分对视网膜OCT图像进行空间标准化。这项工作提出了一种使用A模式扫描对之间的相似性的新型OCT图像变形配准算法。首先,提出了一个视网膜OCT特定的仿射步骤,该步骤使用自动地标对所有受试者的A模式扫描进行全局平移和个体缩放。然后,应用使用正则化一维径向基函数的变形配准来进一步对齐视网膜层。15名受试者的结果表明,与现有技术方法相比,该方法在标记配准方面具有更高的准确性。其他结果表明能够为视网膜OCT生成立体定向空间。

相似文献

1
DEFORMABLE REGISTRATION OF MACULAR OCT USING A-MODE SCAN SIMILARITY.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:476-479. doi: 10.1109/ISBI.2013.6556515.
2
Analysis of macular OCT images using deformable registration.
Biomed Opt Express. 2014 Jun 11;5(7):2196-214. doi: 10.1364/BOE.5.002196. eCollection 2014 Jul 1.
3
OCTRexpert:A Feature-based 3D Registration Method for Retinal OCT Images.
IEEE Trans Image Process. 2020 Jan 23. doi: 10.1109/TIP.2020.2967589.
4
Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
IEEE Trans Biomed Eng. 2015 Feb;62(2):609-17. doi: 10.1109/TBME.2014.2361778. Epub 2014 Oct 8.
7
Multiple-object geometric deformable model for segmentation of macular OCT.
Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.
8
Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces.
Comput Methods Programs Biomed. 2016 Dec;137:1-10. doi: 10.1016/j.cmpb.2016.09.004. Epub 2016 Sep 13.
9
Redefining the limit of the outer retina in optical coherence tomography scans.
Ophthalmology. 2005 Jun;112(6):1079-85. doi: 10.1016/j.ophtha.2004.11.061.
10
A novel 3D segmentation approach for extracting retinal layers from optical coherence tomography images.
Med Phys. 2021 Apr;48(4):1584-1595. doi: 10.1002/mp.14720. Epub 2021 Feb 24.

引用本文的文献

1
Longitudinal deep network for consistent OCT layer segmentation.
Biomed Opt Express. 2023 Apr 3;14(5):1874-1893. doi: 10.1364/BOE.487518. eCollection 2023 May 1.
2
Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls.
Data Brief. 2018 Dec 28;22:601-604. doi: 10.1016/j.dib.2018.12.073. eCollection 2019 Feb.
3
Intensity inhomogeneity correction of SD-OCT data using macular flatspace.
Med Image Anal. 2018 Jan;43:85-97. doi: 10.1016/j.media.2017.09.008. Epub 2017 Oct 12.
4
Voxel Based Morphometry in Optical Coherence Tomography: Validation & Core Findings.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9788. doi: 10.1117/12.2216096. Epub 2016 Mar 29.
5
Analysis of macular OCT images using deformable registration.
Biomed Opt Express. 2014 Jun 11;5(7):2196-214. doi: 10.1364/BOE.5.002196. eCollection 2014 Jul 1.
6
Multiple-object geometric deformable model for segmentation of macular OCT.
Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.

本文引用的文献

2
Evaluation of volume-based and surface-based brain image registration methods.
Neuroimage. 2010 May 15;51(1):214-20. doi: 10.1016/j.neuroimage.2010.01.091. Epub 2010 Feb 1.
3
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Neuroinformatics. 2010 Mar;8(1):5-17. doi: 10.1007/s12021-009-9061-2.
5
Unbiased diffeomorphic atlas construction for computational anatomy.
Neuroimage. 2004;23 Suppl 1:S151-60. doi: 10.1016/j.neuroimage.2004.07.068.
6
The adaptive bases algorithm for intensity-based nonrigid image registration.
IEEE Trans Med Imaging. 2003 Nov;22(11):1470-9. doi: 10.1109/TMI.2003.819299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验