Suppr超能文献

大肠杆菌敲除株的代谢通量分析:来自 Keio 文库的经验教训和未来展望。

Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook.

机构信息

Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.

Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.

出版信息

Curr Opin Biotechnol. 2014 Aug;28:127-33. doi: 10.1016/j.copbio.2014.02.006. Epub 2014 Mar 28.

Abstract

Cellular metabolic and regulatory systems are of fundamental interest to biologists and engineers. Incomplete understanding of these complex systems remains an obstacle to progress in biotechnology and metabolic engineering. An established method for obtaining new information on network structure, regulation and dynamics is to study the cellular system following a perturbation such as a genetic knockout. The Keio collection of all viable Escherichia coli single-gene knockouts is facilitating a systematic investigation of the regulation and metabolism of E. coli. Of all omics measurements available, the metabolic flux profile (the fluxome) provides the most direct and relevant representation of the cellular phenotype. Recent advances in (13)C-metabolic flux analysis are now permitting highly precise and accurate flux measurements for investigating cellular systems and guiding metabolic engineering efforts.

摘要

细胞代谢和调节系统是生物学家和工程师非常感兴趣的基础。对这些复杂系统的不完全了解仍然是生物技术和代谢工程进展的障碍。获得有关网络结构、调节和动力学的新信息的一种既定方法是在受到诸如基因敲除等扰动后研究细胞系统。京都大肠杆菌单基因敲除菌集合正在促进对大肠杆菌的调节和代谢的系统研究。在所有可用的组学测量中,代谢通量谱(通量组)为细胞表型提供了最直接和最相关的表示。(13)C 代谢通量分析的最新进展现在允许进行高度精确和准确的通量测量,以研究细胞系统并指导代谢工程工作。

相似文献

1
Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook.
Curr Opin Biotechnol. 2014 Aug;28:127-33. doi: 10.1016/j.copbio.2014.02.006. Epub 2014 Mar 28.
2
Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism.
Metab Eng. 2019 Sep;55:249-257. doi: 10.1016/j.ymben.2019.08.003. Epub 2019 Aug 4.
3
Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.
Metab Eng. 2016 Sep;37:102-113. doi: 10.1016/j.ymben.2016.05.006. Epub 2016 May 19.
4
Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in .
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):222-227. doi: 10.1073/pnas.1716056115. Epub 2017 Dec 18.
5
¹³C-metabolic flux analysis for Escherichia coli.
Methods Mol Biol. 2014;1191:261-89. doi: 10.1007/978-1-4939-1170-7_16.

引用本文的文献

1
An integrated structural and biophysical approach to study carbon metabolism in .
QRB Discov. 2025 Mar 12;6:e15. doi: 10.1017/qrd.2025.6. eCollection 2025.
3
Machine learning identifies key metabolic reactions in bacterial growth on different carbon sources.
Mol Syst Biol. 2024 Mar;20(3):170-186. doi: 10.1038/s44320-024-00017-w. Epub 2024 Jan 30.
5
Exploring the Glucose Fluxotype of the y-ome Using High-Resolution Fluxomics.
Metabolites. 2021 Apr 26;11(5):271. doi: 10.3390/metabo11050271.
6
Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments.
mBio. 2020 Sep 29;11(5):e02259-20. doi: 10.1128/mBio.02259-20.
7
From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
PLoS Comput Biol. 2019 Sep 10;15(9):e1007319. doi: 10.1371/journal.pcbi.1007319. eCollection 2019 Sep.
9
How adaptive evolution reshapes metabolism to improve fitness: recent advances and future outlook.
Curr Opin Chem Eng. 2018 Dec;22:209-215. doi: 10.1016/j.coche.2018.11.001. Epub 2018 Nov 26.
10
Genome-Scale Fluxome of UTEX 2973 Using Transient C-Labeling Data.
Plant Physiol. 2019 Feb;179(2):761-769. doi: 10.1104/pp.18.01357. Epub 2018 Dec 14.

本文引用的文献

2
Publishing 13C metabolic flux analysis studies: a review and future perspectives.
Metab Eng. 2013 Nov;20:42-8. doi: 10.1016/j.ymben.2013.08.005. Epub 2013 Sep 8.
3
COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis.
Metab Eng. 2013 Nov;20:49-55. doi: 10.1016/j.ymben.2013.08.006. Epub 2013 Sep 8.
4
Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
Curr Opin Biotechnol. 2013 Dec;24(6):973-8. doi: 10.1016/j.copbio.2013.03.018. Epub 2013 Apr 20.
5
13C metabolic flux analysis: optimal design of isotopic labeling experiments.
Curr Opin Biotechnol. 2013 Dec;24(6):1116-21. doi: 10.1016/j.copbio.2013.02.003. Epub 2013 Feb 28.
6
Flux-coupled genes and their use in metabolic flux analysis.
Biotechnol J. 2013 Sep;8(9):1035-42. doi: 10.1002/biot.201200279. Epub 2013 Mar 21.
7
Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies.
Metab Eng. 2013 Mar;16:21-32. doi: 10.1016/j.ymben.2012.11.010. Epub 2012 Dec 14.
8
Tandem mass spectrometry for measuring stable-isotope labeling.
Curr Opin Biotechnol. 2013 Feb;24(1):48-53. doi: 10.1016/j.copbio.2012.10.011. Epub 2012 Nov 8.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验