Nakata Yukihiko, Röst Gergely
Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., Szeged, 6720, Hungary,
J Math Biol. 2015 May;70(6):1411-56. doi: 10.1007/s00285-014-0801-z. Epub 2014 Jun 20.
We formulate an epidemic model for the spread of an infectious disease along with population dispersal over an arbitrary number of distinct regions. Structuring the population by the time elapsed since the start of travel, we describe the infectious disease dynamics during transportation as well as in the regions. As a result, we obtain a system of delay differential equations. We define the basic reproduction number R(0) as the spectral radius of a next generation matrix. For multi-regional systems with strongly connected transportation networks, we prove that if R(0) ≤ 1 then the disease will be eradicated from each region, while if R(0) > 1 there is a globally asymptotically stable equilibrium, which is endemic in every region. If the transportation network is not strongly connected, then the model analysis shows that numerous endemic patterns can exist by admitting a globally asymptotically stable equilibrium, which may be disease free in some regions while endemic in other regions. We provide a procedure to detect the disease free and the endemic regions according to the network topology and local reproduction numbers. The main ingredients of the mathematical proofs are the inductive applications of the theory of asymptotically autonomous semiflows and cooperative dynamical systems. We visualise stability boundaries of equilibria in a parameter plane to illustrate the influence of the transportation network on the disease dynamics. For a system consisting of two regions, we find that due to spatial heterogeneity characterised by different local reproduction numbers, R(0) may depend non-monotonically on the dispersal rates, thus travel restrictions are not always beneficial.
我们构建了一个传染病传播的流行病模型,同时考虑了人口在任意数量不同区域的扩散。按照自旅行开始以来经过的时间对人群进行划分,我们描述了运输过程中以及各区域内的传染病动态。结果,我们得到了一个时滞微分方程组。我们将基本再生数(R(0))定义为下一代矩阵的谱半径。对于具有强连通运输网络的多区域系统,我们证明,如果(R(0) \leq 1),那么疾病将在每个区域被根除;而如果(R(0) > 1),则存在一个全局渐近稳定的平衡点,该平衡点在每个区域都是地方病状态。如果运输网络不是强连通的,那么模型分析表明,通过承认一个全局渐近稳定的平衡点,可能存在多种地方病模式,该平衡点在某些区域可能无病,而在其他区域可能是地方病状态。我们提供了一种根据网络拓扑结构和局部再生数来检测无病区域和地方病区域的方法。数学证明的主要要素是渐近自治半流理论和合作动力系统的归纳应用。我们在参数平面中直观展示平衡点的稳定性边界,以说明运输网络对疾病动态的影响。对于由两个区域组成的系统,我们发现,由于不同局部再生数所表征的空间异质性,(R(0))可能非单调地依赖于扩散率,因此旅行限制并不总是有益的。