Kim Jinyoung, Lenglet Christophe, Duchin Yuval, Sapiro Guillermo, Harel Noam
IEEE J Biomed Health Inform. 2014 Sep;18(5):1678-95. doi: 10.1109/JBHI.2013.2292858.
Volumetric segmentation of subcortical structures, such as the basal ganglia and thalamus, is necessary for noninvasive diagnosis and neurosurgery planning. This is a challenging problem due in part to limited boundary information between structures, similar intensity profiles across the different structures, and low contrast data. This paper presents a semiautomatic segmentation system exploiting the superior image quality of ultrahigh field (7 T) MRI. The proposed approach utilizes the complementary edge information in the multiple structural MRI modalities. It combines optimally selected two modalities from susceptibility-weighted, T2-weighted, and diffusion MRI, and introduces a tailored new edge indicator function. In addition to this, we employ prior shape and configuration knowledge of the subcortical structures in order to guide the evolution of geometric active surfaces. Neighboring structures are segmented iteratively, constraining oversegmentation at their borders with a nonoverlapping penalty. Several experiments with data acquired on a 7 T MRI scanner demonstrate the feasibility and power of the approach for the segmentation of basal ganglia components critical for neurosurgery applications such as deep brain stimulation surgery.
对诸如基底神经节和丘脑等皮质下结构进行体积分割,对于无创诊断和神经外科手术规划而言是必要的。这是一个具有挑战性的问题,部分原因在于结构之间的边界信息有限、不同结构的强度分布相似以及数据对比度低。本文提出了一种利用超高场(7T)MRI卓越图像质量的半自动分割系统。所提出的方法利用了多种结构MRI模态中的互补边缘信息。它从磁敏感加权、T2加权和扩散MRI中最优地选择两种模态,并引入了一种定制的新边缘指示函数。除此之外,我们利用皮质下结构的先验形状和配置知识来引导几何活动表面的演化。相邻结构通过迭代进行分割,并使用非重叠惩罚来约束它们边界处的过分割。在7T MRI扫描仪上获取的数据进行的多项实验证明了该方法对于神经外科应用(如深部脑刺激手术)中关键的基底神经节组件分割的可行性和有效性。