Suppr超能文献

化学毒性研究中的大数据:利用高通量筛选分析来识别潜在毒物。

Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants.

作者信息

Zhu Hao, Zhang Jun, Kim Marlene T, Boison Abena, Sedykh Alexander, Moran Kimberlee

机构信息

Department of Chemistry, Rutgers University , Camden, New Jersey 08102, United States.

出版信息

Chem Res Toxicol. 2014 Oct 20;27(10):1643-51. doi: 10.1021/tx500145h. Epub 2014 Sep 16.

Abstract

High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described.

摘要

用于测定环境化合物体外毒性的高通量筛选(HTS)分析方法已被广泛应用,作为化学毒性体内动物试验的替代方法。当前的高通量筛选研究为科学界提供了丰富的毒理学信息,这些信息有可能被整合到毒性研究中。现有的体外毒性数据每天以结构化格式(例如存入PubChem和其他数据共享网站)或非结构化方式(论文、实验室报告、毒性网站更新等)进行更新。从当前毒性数据中获得的信息如此庞大和复杂,以至于使用现有的数据库管理工具或传统数据处理应用程序进行处理变得困难。因此,在进行现代化学毒性研究时,有必要开发一种大数据方法。从有意义的生物分析中获得的化合物体外数据可以被视为一种反应谱,它提供了有关该化合物影响相关生物蛋白质/受体能力的详细信息。这些信息对于评估复杂的生物活性(例如动物毒性)至关重要,并且在毒理学领域作为大数据迅速增长。本综述主要关注现有的结构化体外数据(例如PubChem数据集),将其作为具有环境意义的化合物(例如潜在的人类/动物毒物)的反应谱。还描述了在化学毒性研究中使用当前大数据池的潜在建模和挖掘工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e48/4203392/265f7f5f8454/tx-2014-00145h_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验