Suppr超能文献

电纺医用级聚氨酯(Carbothane™ 3575A)纳米纤维及其含多壁碳纳米管的复合纳米纤维的成像、光谱、力学、对齐和生物相容性研究。

Imaging, spectroscopy, mechanical, alignment and biocompatibility studies of electrospun medical grade polyurethane (Carbothane™ 3575A) nanofibers and composite nanofibers containing multiwalled carbon nanotubes.

机构信息

Department of Chemistry, University of Texas-Pan American, Edinburg, TX 78539, USA; Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, South Korea.

Department of Chemistry, University of Texas-Pan American, Edinburg, TX 78539, USA.

出版信息

J Mech Behav Biomed Mater. 2015 Jan;41:189-98. doi: 10.1016/j.jmbbm.2014.10.012. Epub 2014 Oct 27.

Abstract

In the present study, we discuss the electrospinning of medical grade polyurethane (Carbothane™ 3575A) nanofibers containing multi-walled-carbon-nanotubes (MWCNTs). A simple method that does not depend on additional foreign chemicals has been employed to disperse MWCNTs through high intensity sonication. Typically, a polymer solution consisting of polymer/MWCNTs has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were evaluated by SEM, TEM, FT-IR and Raman spectroscopy, confirming nanofibers containing MWCNTs. The biocompatibility and cell attachment of the produced nanofiber mats were investigated while culturing them in the presence of NIH 3T3 fibroblasts. The results from these tests indicated non-toxic behavior of the prepared nanofiber mats and had a significant attachment of cells towards nanofibers. The incorporation of MWCNTs into polymeric nanofibers led to an improvement in tensile stress from 11.40 ± 0.9 to 51.25 ± 5.5 MPa. Furthermore, complete alignment of the nanofibers resulted in an enhancement on tensile stress to 72.78 ± 5.5 MPa. Displaying these attributes of high mechanical properties and non-toxic nature of nanofibers are recommended for an ideal candidate for future tendon and ligament grafts.

摘要

在本研究中,我们讨论了含有多壁碳纳米管(MWCNTs)的医用级聚氨基甲酸酯(Carbothane™3575A)纳米纤维的静电纺丝。我们采用了一种不依赖于额外化学物质的简单方法,通过高强度超声分散 MWCNTs。通常,将包含聚合物/MWCNTs 的聚合物溶液进行静电纺丝以形成纳米纤维。通过 SEM、TEM、FT-IR 和拉曼光谱评估了制备的纳米纤维的物理化学性质,证实了含有 MWCNTs 的纳米纤维。在存在 NIH 3T3 成纤维细胞的情况下培养这些纳米纤维垫,研究了它们的生物相容性和细胞附着。这些测试的结果表明,制备的纳米纤维垫没有毒性,并且细胞对纳米纤维有明显的附着。将 MWCNTs 掺入聚合物纳米纤维中,可使拉伸应力从 11.40 ± 0.9 MPa 提高到 51.25 ± 5.5 MPa。此外,纳米纤维的完全对齐导致拉伸应力提高到 72.78 ± 5.5 MPa。这些高机械性能和纳米纤维无毒性质的特性表明,它们是未来肌腱和韧带移植物的理想候选材料。

相似文献

3
Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers.
Int J Pharm. 2011 Dec 15;421(2):310-20. doi: 10.1016/j.ijpharm.2011.09.033. Epub 2011 Oct 1.
4
Electrospun propolis/polyurethane composite nanofibers for biomedical applications.
Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:52-7. doi: 10.1016/j.msec.2014.07.062. Epub 2014 Aug 2.
5
MWCNTs/P(St-co-GMA) composite nanofibers of engineered interface chemistry for epoxy matrix nanocomposites.
ACS Appl Mater Interfaces. 2012 Feb;4(2):777-84. doi: 10.1021/am2014162. Epub 2012 Feb 1.
6
Fabrication of glycopolymer/MWCNTs composite nanofibers and its enzyme immobilization applications.
Colloids Surf B Biointerfaces. 2014 Sep 1;121:417-24. doi: 10.1016/j.colsurfb.2014.06.030. Epub 2014 Jun 19.
7
Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers.
J Biomater Sci Polym Ed. 2012;23(1-4):299-313. doi: 10.1163/092050610X550340. Epub 2011 Jan 18.
8
Human osteoblast cytotoxicity study of electrospun polyurethane/calcium chloride ultrafine nanofibers.
J Nanosci Nanotechnol. 2011 Jun;11(6):4749-56. doi: 10.1166/jnn.2011.3883.
9
Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers.
Biomaterials. 2011 Apr;32(11):2821-33. doi: 10.1016/j.biomaterials.2011.01.051. Epub 2011 Feb 2.
10
Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications.
J Biomater Sci Polym Ed. 2009;20(11):1513-36. doi: 10.1163/092050609X12464344958883.

引用本文的文献

1
Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials.
Int J Nanomedicine. 2022 Dec 29;17:6791-6819. doi: 10.2147/IJN.S393207. eCollection 2022.
3
Innovative Strategies in Tendon Tissue Engineering.
Pharmaceutics. 2021 Jan 11;13(1):89. doi: 10.3390/pharmaceutics13010089.
4
Fabrication of Photo-Crosslinkable Poly(Trimethylene Carbonate)/Polycaprolactone Nanofibrous Scaffolds for Tendon Regeneration.
Int J Nanomedicine. 2020 Aug 25;15:6373-6383. doi: 10.2147/IJN.S246966. eCollection 2020.
5
Glassy carbon microneedles-new transdermal drug delivery device derived from a scalable C-MEMS process.
Microsyst Nanoeng. 2018 Dec 17;4:38. doi: 10.1038/s41378-018-0039-9. eCollection 2018.
6
Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments.
Materials (Basel). 2018 Oct 12;11(10):1963. doi: 10.3390/ma11101963.
7
Polydiacetylene Nanofiber Composites as a Colorimetric Sensor Responding To and pH.
ACS Omega. 2017 Oct 31;2(10):7334-7342. doi: 10.1021/acsomega.7b01136. Epub 2017 Oct 27.
8
Meltblown Polymer Fabrics as Candidate Scaffolds for Rotator Cuff Tendon Tissue Engineering.
Tissue Eng Part A. 2017 Sep;23(17-18):958-967. doi: 10.1089/ten.TEA.2016.0470.
9
Recent advances in nano scaffolds for bone repair.
Bone Res. 2016 Dec 13;4:16050. doi: 10.1038/boneres.2016.50. eCollection 2016.

本文引用的文献

1
The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair.
J Mech Behav Biomed Mater. 2014 Dec;40:59-68. doi: 10.1016/j.jmbbm.2014.08.002. Epub 2014 Aug 17.
2
In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material.
J Mech Behav Biomed Mater. 2014 Oct;38:143-53. doi: 10.1016/j.jmbbm.2014.06.018. Epub 2014 Jul 8.
5
Fiber-based tissue engineering: Progress, challenges, and opportunities.
Biotechnol Adv. 2013 Sep-Oct;31(5):669-87. doi: 10.1016/j.biotechadv.2012.11.007. Epub 2012 Nov 27.
6
Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers.
Biomicrofluidics. 2011 Jun;5(2):22208. doi: 10.1063/1.3576903. Epub 2011 Jun 29.
8
Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
Acta Biomater. 2011 Aug;7(8):3178-86. doi: 10.1016/j.actbio.2011.04.008. Epub 2011 Apr 27.
9
Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers.
Biomaterials. 2011 Apr;32(11):2821-33. doi: 10.1016/j.biomaterials.2011.01.051. Epub 2011 Feb 2.
10
Novel nanofiber-based scaffold for rotator cuff repair and augmentation.
Tissue Eng Part A. 2009 Jan;15(1):115-26. doi: 10.1089/ten.tea.2008.0014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验